How do cells count?

Jan 12, 2009

In the 13th January print edition of the journal Current Biology, Instituto Gubenkian de Ciencia researchers provide insight into an old mystery in cell biology, and offer up new clues to understanding cancer. Inês Cunha Ferreira and Mónica Bettencourt Dias, working with researchers at the universities of Cambridge, UK, and Siena, Italy, unravelled the mystery of how cells count the number of centrosomes, the structure that regulates the cell's skeleton, controls the multiplication of cells, and is often transformed in cancer.

This research addresses an ancient question: how does a cell know how many centrosomes it has? It is equally an important question, since both an excess or absence of centrosomes are associated with disease, from infertility to cancer.

Each cell has, at most, two centrosomes. Whenever a cell divides, each centrosome gives rise to a single daughter centrosome, inherited by one of the daughter cells. Thus, there is strict control on progeny! By using the fruit fly, the IGC researchers identified the molecule that is responsible for this 'birth control policy' of the cell - a molecule called Slimb. In the absence of Slimb, each mother centrosome can give rise to several daughters in one go, leading to an excess of centrosomes in the cell.

In recent years, Monica's group has produced several important findings relating to centrosome control: they identified another molecule, SAK, as the trigger for the formation of centrosomes. When SAK is absent, there are no centrosomes, whereas if SAK is overproduced, the cell has too many centrosomes. These results were published in the prestigious journals Current Biology and Science, in 2005 and 2007. Now, the group has discovered the player in the next level up: Slimb mediates the destruction of SAK, and in so doing, ultimately controls the number of centrosomes in a cell.

Monica explains, 'We carried out these studies in the fruit fly, but we know that the same mechanism acts in mice and even in humans. Knowing that Slimb is altered in several cancers opens up new avenues of research into the mechanisms underlying the change in the number of centrosomes seen in many tumours'.

Mónica first became interested in centrosomes and in SAK when she was an Associate Researcher at Cambridge University, UK, and has pursued this interest at the IGC, where she has been group leader of the Cell Cycle Regulation laboratory since 2006. Inês Cunha Ferreira travelled with Monica from Cambridge, and is now in her second year of the in-house PhD programme. Two other PhD students in the lab also contributed to this research, Ana Rodrigues Martins and Inês Bento.

Source: Instituto Gulbenkian de Ciencia

Explore further: Romeo and Juliet roles for banded mongooses

Related Stories

Blacklist warnings spread on websites in North Korea

18 hours ago

North Korea, already one of the least-wired places in the world, appears to be cracking down on the use of the Internet by even the small number of foreigners who can access it with relative freedom by blacklisting ...

Recommended for you

Research shows 'mulch fungus' causes turfgrass disease

6 hours ago

Inadvertently continuing a line of study they conducted about 15 years ago, a team of Penn State researchers recently discovered the causal agent for an emerging turfgrass disease affecting golf courses around ...

Study on pesticides in lab rat feed causes a stir

8 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

Why the seahorse's tail is square

8 hours ago

Why is the seahorse's tail square? An international team of researchers has found the answer and it could lead to building better robots and medical devices. In a nutshell, a tail made of square, overlapping ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.