Capture of nanomagnetic 'fingerprints' a boost for next-generation information storage media

Jan 29, 2009
This magnetic fingerprint, or "FORC distribution," of 10-nanometer-thick cobalt nanodisks shows that all the magnetic moments are pointing in the same direction. Credit: Kai Liu/UC Davis

In the race to develop the next generation of storage and recording media, a major hurdle has been the difficulty of studying the tiny magnetic structures that will serve as their building blocks. Now a team of physicists at the University of California, Davis, has developed a technique to capture the magnetic "fingerprints" of certain nanostructures - even when they are buried within the boards and junctions of an electronic device.

This breakthrough in nanomagnetism was published in the Jan. 19 issue of Applied Physics Letters.

The past decade has witnessed a thousand-fold increase in magnetic recording area density, which has revolutionized the way information is stored and retrieved. These advances are based on the development of nanomagnet arrays which take advantage of the new field of spintronics: using electron spin as well as charge for information storage, transmission and manipulation.

But due to the miniscule physical dimensions of nanomagnets - some are as small as 50 atoms wide - observing their magnetic configurations has been a challenge, especially when they are not exposed but built into a functioning device.

"You can't take full advantage of these nanomagnets unless you can 'see' and understand their magnetic structures - not just how the atoms and molecules are put together, but how their electronic and magnetic properties vary accordingly," said Kai Liu, a professor and Chancellor's Fellow in physics at UC Davis. "This is difficult when the tiny nanomagnets are embedded and when there are billions of them in a device."

To tackle this challenge, Liu and three of his students, Jared Wong, Peter Greene and Randy Dumas, created copper nanowires embedded with magnetic cobalt nanodisks. Then they applied a series of magnetic fields to the wires and measured the responses from the nanodisks. By starting each cycle at full saturation - that is, using a field strong enough to align all the nanomagnets - then applying a progressively more negative field with each reversal, they created a series of information-rich graphic patterns known to physicists as "first-order reversal curve (FORC) distributions."

"Each pattern tells us a different story about what's going on inside the nanomagnets," Liu said. "We can see how they switch from one alignment to another, and get quantitative information about how many nanomagents are in one particular phase: for example, whether the magnetic moments are all pointing in the same direction or curling around a disk to form vortices. This in turn tells us how to encode information with these nanomagnets."

The technique will be applicable to a wide variety of physical systems that exhibit the kind of lag in response time (or hysteresis) as magnets, including ferroelectric, elastic and superconducting materials, Liu explained. "It's a powerful tool for probing variations, or heterogeneity, in the system, and real materials always have a certain amount of this."

Source: University of California - Davis

Explore further: Star power: Troubled ITER nuclear fusion project looks for new path

Related Stories

Topological insulators become a little less 'elusive'

May 12, 2015

They are 'strange' materials, insulators on the inside and conductors on the surface. They also have properties that make them excellent candidates for the development of spintronics ('spin-based electronics') ...

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Defects in atomically thin semiconductor emit single photons

May 04, 2015

Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for ...

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

21 hours ago

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

23 hours ago

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

Amazing microdroplet structures may lead to new technologies

May 20, 2015

Unexpected shapes of mesoscale atoms—structures built of microdroplets encapsulated within microdroplets—have been created at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 29, 2009
Oops, now they are moving into ferroelectrics and multiferroics because ferromagnetics is dead.

What they propose is ancient history.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.