Baby beetles inspire researchers to build 'mini boat' powered by surface tension (Video)

January 21, 2009

Inspired by the aquatic wriggling of beetle larvae, a University of Pittsburgh research team has designed a propulsion system that strips away paddles, sails, and motors and harnesses the energy within the water's surface. The technique destabilizes the surface tension surrounding the object with an electric pulse and causes the craft to move via the surface's natural pull.

The researchers will present their findings Jan. 26 at the Institute of Electrical and Electronics Engineers' 2009 Micro Electro Mechanical Systems (MEMS) conference in Sorrento, Italy.

This video is not supported by your browser at this time.
Footage of the boat
This method of propulsion would be an efficient and low-maintenance mechanism for small robots and boats that monitor water quality in oceans, reservoirs, and other bodies of water, said Sung Kwon Cho, senior researcher and a professor of mechanical engineering and materials science in Pitt's Swanson School of Engineering. These devices are typically propeller-driven. The Pitt system has no moving parts and the low-energy electrode that emits the pulse could be powered by batteries, radio waves, or solar power, Cho added.

Cho envisioned the system after reading about the way beetle larvae move on water, he said. Like any floating object, larva resting in the water causes the surface tension to pull equally on both sides. To move forward, the larva bends its back downward to change the tension direction behind it. The forward tension then pulls the larva through the water.

This video is not supported by your browser at this time.
A film of the rudder capability
Cho and his team—Pitt engineering doctoral students Sang Kug Chung and Kyungjoo Ryu—substituted the larva's back bending with an electric pulse. In their experiments, an electrode attached to a 2-centimeter-long "mini-boat" emitted a surge that changed the rear surface tension direction and propelled the boat at roughly 4 millimeters per second. A second electrode attached to the boat's front side served as the rudder.

An abstract of Cho's mechanism is available on Pitt's Web site at .

Source: University of Pittsburgh

Explore further: Exploring the physics of a chocolate fountain

Related Stories

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Uranus' "sprightly" moon Ariel

November 2, 2015

The outer Solar System has enough mysteries and potential discoveries to keep scientists busy for decades. Case in point, Uranus and it's system of moons. Since the beginning of the Space Age, only one space probe has ever ...

Plate tectonics thanks to plumes?

November 11, 2015

"Knowing what a chicken looks like and what all the chickens before it looked like doesn't help us to understand the egg," says Taras Gerya. The ETH Professor of Geophysics uses this metaphor to address plate tectonics and ...

New surfaces delay ice formation

October 6, 2015

If you've ever waited on an airport runway for your plane to be de-iced, had to remove all your food so the freezer could defrost, or arrived late to work because you had to scrape the sheet of ice off your car windshield, ...

Recommended for you

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.