Single Atom Quantum Dots Bring Real Devices Closer (Video)

January 27, 2009
Four atomic quantum dots are coupled to form a "cell" for containing electrons. The cell is filled with just two electrons. Control charges are placed along a diagonal to direct the two electrons to reside at just two of the four quantum dots comprising the cell. This new level of control of electrons points to new computation schemes that require extremely low power to operate. Such a device is expected to require about 1,000 times less power and will be about 1,000 times smaller than today's transistors. Credit: Robert A. Wolkow

(PhysOrg.com) -- Single atom quantum dots created by researchers at Canada’s National Institute for Nanotechnology and the University of Alberta make possible a new level of control over individual electrons, a development that suddenly brings quantum dot-based devices within reach. Composed of a single atom of silicon and measuring less than one nanometre in diameter, these are the smallest quantum dots ever created.

Quantum dots have extraordinary electronic properties, like the ability to bottle-up normally slippery and speedy electrons. This allows controlled interactions among electrons to be put to use to do computations. Until now, quantum dots have been useable only at impractically low temperatures, but the new atom-sized quantum dots perform at room temperature.

Often referred to as artificial atoms, quantum dots have previously ranged in size from 2-10 nanometers in diameter. While typically composed of several thousand atoms, all the atoms pool their electrons to “sing with one voice”, that is, the electrons are shared and coordinated as if there is only one atomic nucleus at the centre. That property enables numerous revolutionary schemes for electronic devices.

This video is not supported by your browser at this time.
An animation explaining the use of single atom quantum dots to enable the QCA computation scheme. Video by Robert A. Wolkow

Research project leader Robert A. Wolkow described the potential impact saying, “Because they operate at room temperature and exist on the familiar silicon crystals used in today’s computers, we expect these single atom quantum dots will transform theoretical plans into real devices.”

The single atom quantum dots have also demonstrated another advantage - significant control over individual electrons by using very little energy. Wolkow sees this low energy control as the key to quantum dot application in entirely new forms of silicon-based electronic devices, such as ultra low power computers. “The capacity to compose these quantum dots on silicon, the most established electronic material, and to achieve control over electron placement among dots at room temperature puts new kinds of extremely low energy computation devices within reach.”

The single atom quantum dots and their ability to control electrons is the focus of a paper titled “Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature” posted January 27, 2009, in the on-line edition and published in the January 30, 2009, edition of Physical Review Letters.

Reference: Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature, M. Baseer Haider, Jason L Pitters, Gino A. DiLabio, Lucian Livadaru, Josh Y Mutus and Robert A. Wolkow, Physical Review Letters 102, 046805, 2009

Source: National Institute for Nanotechnology

Explore further: Superfast fluorescence sets new speed record

Related Stories

Quantum networks: Back and forth are not equal distances

July 27, 2015

Quantum technology based on light (photons) has great potential for radically new information technology based on photonic circuits. Up to now, the photons in quantum photonic circuits have behaved in the same way whether ...

New technique to synthesise nanostructured nanowires

July 16, 2015

Researchers have developed a new method for growing 'hybrid' crystals at the nanoscale, in which quantum dots – essentially nanoscale semiconductors – of different materials can be sequentially incorporated into a host ...

Recommended for you

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Jan 30, 2009
"Single atom quantum dot" = atom

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.