New research targets West Nile virus and dengue fever

Dec 11, 2008

Research conducted at The University of Queensland could contribute to the development of a vaccine and cure for West Nile virus and Dengue fever.

Led by Associate Professor Alexander Khromykh, a team of researchers from UQ's School of Molecular and Microbial Sciences identified a novel characteristic of the virus family to which these diseases belong.

The team found all flaviviruses produced a small molecule which, among other functions, controlled the host's response to viral infection.

This molecule, called a subgenomic noncoding ribonucleic acid (sfRNA), is a part of the virus genome.

"To develop new and effective antiviral strategies, we have to know as much as possible about the virus, or virus family, that we are fighting," Dr Khromykh said.

"As sfRNA is produced by all flaviviruses we tested so far, targeting it with an antiviral therapy may be effective for the whole range of flaviviruses.

"By using reverse genetic engineering we were able to generate viruses that do not produce this sfRNA and showed that these engineered viruses are no longer able to kill their hosts or elicit disease symptoms.

"These engineered viruses offer great potential as vaccine candidates as they are expected to elicit an antiviral immune response similar to the normal virus infection without causing a disease."

Dr Khromykh said by studying mice infected with these engineered West Nile viruses, the team learned more about how the body attempted to combat a flavivirus infection.

The part of the virus the infected cells in the body are unsuccessful in destroying forms the sfRNA, which helps the virus to kill cells and cause potentially deadly diseases, he said.

"We identified sfRNA as a potential antiviral target for the large group of medically important viruses," Dr Khromykh said.

"Moreover, the knowledge obtained from our studies with West Nile virus should be readily applicable for designing anti-viral drugs and engineering similar vaccine candidates for other medically important flaviviruses."

Source: Research Australia

Explore further: New strategies against rare, fatal lung syndrome

Related Stories

A CRISPR antiviral tool

Apr 28, 2015

Emory scientists have adapted an antiviral enzyme from bacteria called Cas9 into an instrument for inhibiting hepatitis C virus in human cells.

Viral proteins may regulate human embryonic development

Apr 21, 2015

A fertilized human egg may seem like the ultimate blank slate. But within days of fertilization, the growing mass of cells activates not only human genes but also viral DNA lingering in the human genome from ...

Recommended for you

New strategies against rare, fatal lung syndrome

8 hours ago

Hermansky-Pudlak syndrome (HPS) patients suffer symptoms including albinism, visual impairment, and slow blood clotting, but what makes some versions of the genetic condition fatal is that patients with some ...

How a newborn baby sees you

16 hours ago

A newborn infant can see its parents' expressions at a distance of 30 cm. For the first time researchers have managed to reconstruct infants visual perception of the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.