New way of viewing cells could lead to easier routes for drug manufacture

December 10, 2008

Research by a Michigan State University chemist could eventually lead to a quicker and easier way of developing protein-based drugs that are key to treating a number of diseases, including cancer, diabetes and hepatitis.

Proteins used in drug manufacture and research often are made within genetically modified Escherichia coli, a one-cell bacteria. That protein tends to collect into what scientists call inclusion bodies. Those hard-to-separate clumps render up to 95 percent of the protein unusable, according to associate chemistry professor David P. Weliky.

Some can be recovered by breaking down the protein to separate it, but because protein structure determines its function, another step must be added to "refold" it into its original configuration.

Weliky and colleagues took a closer look at the structure of the proteins that make up these inclusion bodies. Learning what makes them stick together might yield some clues as to how to separate them, he said, and that could make the manufacturing process more efficient.

Instead of employing more commonly used infrared spectroscopy to look at dehydrated samples, the researchers used nuclear magnetic resonance spectroscopy using whole cells. That technology analyzes the magnetic properties of an atom's nucleus.

While best known as medical diagnostic imaging technology, Weliky and colleagues view NMR as a powerful approach to analyzing biological molecules, including bacterial inclusion bodies. Because the inclusion body protein appeared to be predominantly folded rather than unfolded, it might be possible to extract protein without separating and then refolding, Weliky said.

"This study highlights our ability to probe the molecular structure of a single protein in whole cells and to apply advanced analytical and biochemical methods to a problem of general significance in biotechnology," Weliky said.

Source: Michigan State University

Explore further: Targeting brain chemistry to beat disease

Related Stories

Targeting brain chemistry to beat disease

November 17, 2016

Thanks to advances in big data and medicinal chemistry, scientists can screen thousands of molecules in the search for protein structures leading to new drugs for brain diseases.

Study uncovers secrets of a clump-dissolving protein

January 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. ...

Freeing protein-based drugs from bacteria's natural traps

October 13, 2008

In a finding that could speed the development of new protein-based drugs for fighting diabetes, hepatitis, and other diseases, researchers are reporting progress toward preventing or destroying an unusual structure that reduces ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.