Tiny delivery system with a big impact on cancer cells

December 15, 2008
A new group of nanocomposite particles could lead to improved anti-cancer drugs, researchers report. Credit: Hari S. Muddana

Researchers in Pennsylvania are reporting for the first time that nanoparticles 1/5,000 the diameter of a human hair encapsulating an experimental anticancer agent, kill human melanoma and drug-resistant breast cancer cells growing in laboratory cultures. The discovery could lead to the development of a new generation of anti-cancer drugs that are safer and more effective than conventional chemotherapy agents, the scientists suggest. The research is scheduled for the Dec. 10 issue of ACS' Nano Letters.

In the new study, Mark Kester, James Adair and colleagues at Penn State's Hershey Medical Center and University Park campus point out that certain nanoparticles have shown promise as drug delivery vehicles. However, many of these particles will not dissolve in body fluids and are toxic to cells, making them unsuitable for drug delivery in humans. Although promising as an anti-cancer agent, ceramide also is insoluble in the blood stream making delivery to cancer cells difficult.

The scientists report a potential solution with development of calcium phosphate nanocomposite particles (CPNPs). The particles are soluble and with ceramide encapsulated with the calcium phosphate, effectively make ceramide soluble. With ceramide encapsulated inside, the CPNPs killed 95 percent of human melanoma cells and was "highly effective" against human breast cancer cells that are normally resistant to anticancer drugs, the researchers say.

Penn State Research Foundation has licensed the calcium phosphate nanocomposite particle technology known as "NanoJackets" to Keystone Nano, Inc. MK and JA are CMO and CSO, respectively.

Article: "Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells", pubs.acs.org/stoken/presspac/presspac/full/10.1021/nl802098g

Provided by ACS

Explore further: DNA-based nanodevices for molecular medicine

Related Stories

DNA-based nanodevices for molecular medicine

September 24, 2015

Researchers from Aalto University have published an article in the recent Trends in Biotechnology journal. The article discusses how DNA molecules can be assembled into tailored and complex nanostructures, and further, how ...

Dually noted: New CRISPR-Cas9 strategy edits genes two ways

September 7, 2015

The CRISPR-Cas9 system has been in the limelight mainly as a revolutionary genome engineering tool used to modify specific gene sequences within the vast sea of an organism's DNA. Cas9, a naturally occurring protein in the ...

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Recommended for you

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 16, 2008
o.k.! Whatever works that can be brought to market!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.