Shared survival mechanism explains why 'good' nerve cells last and 'bad' cancer cells flourish

December 15, 2008

Cancer cells and nervous system neurons may not look or act alike, but both use strikingly similar ways to survive, according to new research from the University of North Carolina at Chapel Hill School of Medicine.

The study published in the December issue of Nature Cell Biology is the first to describe how neurons (nerve cells) and cancer cells achieve the common goal of inhibiting the series of biochemical events called apoptosis that eventually causes cells to break down and die.

That's good in the case of neurons, but bad when it comes to cancer.

"In neurons, inhibiting cell death is physiologically important to ensuring their long term survival," said the study's lead author, neurobiologist Mohanish Deshmukh, Ph.D., associate professor of cell and developmental biology and member of the Lineberger Comprehensive Cancer Center. "In cancer cells, blocking cell death allows them to evade the host defense systems and proliferate uncontrollably."

Both neurons and cancer cells do have something in common: relying extensively on the metabolism of glucose, a simple sugar. But until now, the advantages of this common characteristic have remained unclear.

"One reason why these results are so interesting is that neurons and cancer cells are as different from each other as you can imagine. For example, cancer cells divide continuously, whereas neurons don't divide at all," Deshmukh said.

In their research, Deshmukh and UNC graduate student Allyson Vaughn (currently a postdoctoral scientist at MIT) found that to prevent death, neurons and cancer cells use a specific metabolic pathway, or series of chemical reactions. This pathway – the pentose phosphate biochemical pathway – inhibits the activation of a key protein involved in the process of cell death called cytochrome c. "What we show is that both neurons and cancer cells inhibit the cell death process mediated by cytochrome c," Deshmukh said.

Specifically, according to the study, cytochrome c's ability to induce death can be turned off if the cellular environment contains high levels of antioxidants. Healthy neurons and cancer cells have increased levels of the antioxidant glutathione (GSH), which is generated by glucose metabolism through the pentose phosphate pathway. Thus, both neurons and cancer cells are able to resist cell death in part via their reliance on glucose metabolism.

"For neurons and cancer cells, evolution has come up with ways to restrict the cell death pathway. Our results provide insight into the mechanism behind this adaptive advantage," Deshmukh said. "They also bring together the fields of cancer and neurobiology and suggest that the mechanisms used by neurons to evade cell death could be the same ones adapted by dividing cells during their progression toward cancer."

The UNC scientist said his lab's further systematic explorations for other similarities between these cell types may offer insights into turning the cell death process back on in cancer cells.

Source: University of North Carolina

Explore further: Sensory illusion causes cells to self-destruct

Related Stories

Sensory illusion causes cells to self-destruct

November 19, 2015

Magic tricks work because they take advantage of the brain's sensory assumptions, tricking audiences into seeing phantoms or overlooking sleights of hand. Now a team of UC San Francisco researchers has discovered that even ...

Nanocarriers may carry new hope for brain cancer therapy

November 19, 2015

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into surrounding tissue, is virtually inoperable, resistant to therapies, ...

A Prkci gene keeps stem cells in check

October 31, 2015

When it comes to stem cells, too much of a good thing isn't wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.