Stronger coastal winds due to climate change may have far-reaching effects

December 19, 2008

Future increases in wind strength along the California coast may have far-reaching effects, including more intense upwelling of cold water along the coast early in the season and increased fire danger in Southern California, according to researchers at the Climate Change and Impacts Laboratory at the University of California, Santa Cruz.

Earth scientist Mark Snyder will present the findings in a poster titled "Future Changes in Surface Winds in the Western U.S. due to Climate Change" at the Fall Meeting of the American Geophysical Union (AGU) in San Francisco on Friday, December 19.

Snyder's group used a regional climate model to study how the climate along the U.S. West Coast might change in the future as a result of global warming driven by increasing atmospheric concentrations of greenhouse gases. The results suggest that a general increase in wind speeds along the coast is likely to accompany regional changes in climate.

"What we think is going on is that land temperatures are increasing at a faster rate than the ocean temperatures, and this thermal gradient between the land and the ocean is driving increased winds," Snyder said.

The researchers conducted multiple runs of their regional model to compare simulations of the coastal climate for two time periods: 1968 to 2000 ("modern climate") and 2038 to 2070 ("future climate"). The regional model was driven by input from the global climate models used in the most recent report of the Intergovernmental Panel on Climate Change (IPCC AR4). The future climate projections were based on a "high-growth" emissions scenario (A2) thought to provide an upper range of possible future climates, although Snyder noted that recent global carbon dioxide emissions have exceeded even the highest projections of earlier IPCC reports.

The results showed increases in wind speeds of up to 2 meters per second, which is a large change in relation to current average wind speeds of about 5 meters per second, Snyder said. One effect of these increased winds may be earlier and more intense upwelling of cold water along the coast.

Upwelling is generally a good thing, bringing up nutrient-rich deep water to support thriving coastal ecosystems. But researchers think too much upwelling may be causing the massive "dead zone" that has begun to appear with alarming regularity off the Oregon coast. According to an earlier study by Oregon researchers, intense upwelling driven by stronger, more persistent winds stimulates excessive growth of phytoplankton (microscopic algae), which ultimately sink to the bottom and decompose, sucking oxygen out of the bottom waters.

Snyder said these conditions may become more prevalent in the future, and stronger winds all along the coast may cause the Oregon dead zone to expand into California waters.

Strong winds can also create extremely hazardous fire conditions, as was seen this fall in Southern California. On the positive side, strong winds would be good for the growing wind energy industry. Snyder also noted that an enhanced sea breeze during the warm months of the year has a cooling effect along the coast. Such a cooling trend could have many ramifications, particularly for coastal species adapted to seasonal changes in temperatures and fog, he said.

Source: University of California - Santa Cruz

Explore further: Bringing together storm tracks and clouds

Related Stories

Bringing together storm tracks and clouds

September 9, 2015

We often talk about future climate change in terms of "global warming." But when it comes to the impacts of global warming, regional changes in winds and precipitation are more relevant. The latter depend on how the circulation ...

A technique to predict the energy in future oceanic waves

September 1, 2015

Marine energy has great future potential, according to the experts, but there is still a long way to go before it can be used on a large scale. Despite the problem of intermittency, wave energy has an advantage over wind ...

Saving Louisiana's coast

August 27, 2015

It was Day Nine after Katrina struck in 2005 when Sarah Mack's bosses at the Sewerage and Water Board of New Orleans called her back to work.

Scientists squabble while Africa's only penguins perish

August 27, 2015

They're cute, knee-high, they bray like donkeys and are a tourist attraction near Cape Town. But African Penguins—the continent's only species of the flightless bird—are at risk of extinction.

DNA sequencing used to identify thousands of fish eggs

August 26, 2015

Using DNA sequencing, researchers have accurately painted a clear picture of fish spawning activities in a marine protected area (MPA) and have created a baseline for continuing studies on the effects of climate variability ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

History shows more big wildfires likely as climate warms

October 5, 2015

The history of wildfires over the past 2,000 years in a northern Colorado mountain range indicates that large fires will continue to increase as a result of a warming climate, according to new study led by a University of ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (4) Dec 19, 2008
"Snyder also noted that an enhanced sea breeze during the warm months of the year has a cooling effect along the coast."

Proof positive that Global Warming causes cooling!
3.7 / 5 (3) Dec 23, 2008
Uhhh, the coastal winds depend on the temperature difference between the ocean and land. According to AGW the ocean temperatures are going up which should reduce the wind speeds. According to measured ocean temperatures (cooling) and land temperatures (cooling) you would expect no change.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.