Stressed-out mice reveal role of epigenetics in behavior

December 11, 2008

Research conducted by a team in Switzerland suggests that a family of genes involved in regulating the expression of other genes in the brain is responsible for helping us deal with external inputs such as stress. Their results, appearing in the December 11 advance online version of the journal Neuron, may also give a clue to why some people are more susceptible to anxiety or depression than others.

The researchers from EPFL and the National Competence Center "Frontiers in Genetics" studied the role of a family of genes known as KRAB-ZFP, which acts like a group of genetic censors, selectively silencing the expression of other genes. These repressors make up about 2% of our genetic material, but little is known about how this "epigenetic" silencing process works, what the long-term consequences are, and even which genes are targeted. (Epigenetics refers to a change in gene expression that is caused by something other than a change in the underlying DNA sequence.)

The researchers bred a strain of mice that lacked in the hippocampus, a part of the forebrain involved in short-term memory and inhibition, a key cofactor used by the KRAB family. The genetically altered mice appeared completely normal until they were placed in a stressful situation. Then they became extremely anxious. Although the normal mice quickly adapted, the altered mice never managed to overcome their stress, and remained anxious and unable to complete simple cognitive tasks. The disruption of the KRAB-mediated regulatory process thus altered the mice's normal behavioral response to stress.

"The KRAB regulators appeared fairly recently on an evolutionary scale," notes EPFL professor Didier Trono, lead author on the study, " and it's very likely that there is a fair degree of polymorphism between individuals. We postulate that variability in these genes is one factor that may participate in predisposing people to anxiety syndromes or depression. "

Because epigenetic alterations are often long-lasting and sometimes permanent, one could also interpret them as a way in which an individual's personal history can have a lasting impact on his or her genetic expression. "It's a way for a cell to have a sort of memory," explains Trono.

This work opens promising leads for further exploration, because evidence of epigenetic modification has been observed in animal models of depression, addiction, schizophrenia and neuro-developmental disorders. Some psychoactive drugs like cocaine or anti-psychotics also cause changes in some of the co-factors involved in this genetic regulatory system. With an understanding of the molecular mechanisms involved in epigenetic modulation, it might be possible to develop targeted therapies for those individuals in whom it malfunctions.

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells

Related Stories

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Key genetic event underlying fin-to-limb evolution

August 18, 2015

A study of catsharks reveals how alterations in the expression and function of certain genes in limb buds underlie the evolution of fish fins to limbs. The findings are reported by researchers from Tokyo Institute of Technology ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

Switching mouse neural stem cells to a primate-like behavior

August 7, 2015

When the right gene is expressed in the right manner in the right population of stem cells, the developing mouse brain can exhibit primate-like features. In a paper publishing August 7th in the Open Access journal PLOS Biology, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.