Scientists demonstrate modulation of gene expression by protein coding regions

Dec 23, 2008

A research team at the Stowers Institute has discovered how the expression of one of the Hox master control genes is regulated in a specific segment of the developing brain. The findings provide important insight into how and where the brain develops some of its unique and important structures.

The findings were posted to the online Early Edition of the Proceedings of the National Academy of Science today.

The team led by Robb Krumlauf and Leanne Wiedemann set out to understand the "instruction manual" for a Hox gene that tells the early brain which genes to turn on and in what order, to specify critical regions of the adult brain. Their studies discovered how expression of the key regulatory protein, encoded by the Hoxa2 gene, is controlled. Surprisingly, the DNA sequence that contains the instructions about when and where to express Hoxa2 in a segment of the developing brain overlaps with sequences that code for amino acids of the Hoxa2 protein.

"In the mammalian genome, sequences that encode proteins and those that control gene expression are usually separate from each other," explained Robb Krumlauf, Ph.D., Scientific Director. "Most approaches to the identification of DNA elements that control gene expression utilize methods that exclude protein coding domains. Our group has now discovered that protein coding regions can also play a role in modulating gene expression. This work has important implications for identifying the regulatory logic contained in mammalian genomes."

"Our findings provide important insight into the regulation of the formation of the anterior hindbrain," said Leanne Wiedemann, Ph.D., a co-investigator in the Krumlauf Lab and senior author on the publication. "Additionally, because we now understand that regulatory input from coding regions needs to be considered, our findings have broader implications in helping to design tests and interpret data from large-scale analyses of gene regulation."

Expanding on this work, their lab will continue to dissect the regulatory networks and integrate the genes that play a role in hindbrain development using evolutionary comparisons, bioinformatics approaches, and experimental analyses.

Source: Stowers Institute for Medical Research

Explore further: Genetic testing in kids is fraught with complications

Related Stories

Study hints at why parrots are great vocal imitators

Jun 24, 2015

An international team of scientists led by Duke University researchers has uncovered key structural differences in the brains of parrots that may explain the birds' unparalleled ability to imitate sounds ...

Protein plays unexpected role in embryonic stem cells

Jun 18, 2015

What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That's the kind of surprise scientists at the Salk Institute experienced ...

Recommended for you

Genetic testing in kids is fraught with complications

15 hours ago

A woman coping with the burden of familial breast cancer can't help but wonder if her young daughter will suffer the same fate. Has she inherited the same disease-causing mutation? Is it best to be prepared ...

Cause of acute liver failure in young children discovered

18 hours ago

Acute liver failure is a rare yet life-threatening disease for young children. It often occurs extremely rapidly, for example, when a child has a fever. Yet in around 50 percent of cases it is unclear as to why this happens. ...

Genome sequencing illuminates rare Aicardi syndrome

19 hours ago

As my inbox fills with ever more updates on the number of human genomes sequenced and the plummeting time and cost of next next next generation sequencing, I find myself hitting delete more and more often. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.