Scientist: Microbe Community Deep Beneath Arctic Permafrost Needs Study

Dec 18, 2008

(PhysOrg.com) -- A community of microbes, living in a frigid layer of gas hydrates deep beneath the Arctic permafrost, has piqued the interest of scientists who say a better understanding of that environment is important because it is both a potential fuel source and record of climate change.

Frederick “Rick” Colwell, a microbiologist from Oregon State University, shared the results of his research at the annual meeting of the American Geophysical Union, outlining how these microbes may have been around for as long as 35 million years, when ancient beach sands were deposited along what is now the North Slope of Alaska.

“These microbes co-exist with methane hydrates more than 600 meters beneath the North Slope, just below the permafrost layer,” Colwell said. “It’s an interesting location for life to exist. We don’t understand all the characteristics for life and we need to know more about this novel environment.”

A professor in Oregon State’s College of Oceanic and Atmospheric Sciences, Colwell was part of a team that explored a core sample taken during a “production test” of the region’s fuel potential. The research, funded by BP and the Department of Energy, sought to learn more about whether this rich methane field could be used as a fuel source.

During that exploration, a science team was able to extract a 154-meter core sample from more than 600 meters below the surface. There the porous ancient beach sands have been filled with gas and water deposits, forming a methane hydrate field that the scientists believe is about 1.5 million years old – the same age as the permafrost covering it.

“One of the scientific curiosities we’d like to explore is what controls the distribution and diversity of the microbes in the methane hydrates,” Colwell said. “Some microbes consume methane as an energy source and others produce methane. It’s important to learn more about this environment where an unconventional fuel source exists.”

Colwell was part of a scientific panel that produced a report for the Council of Canadian Academies in July of 2008 called “Energy From Gas Hydrates: Assessing the Opportunities and Challenges for Canada.” In that report, the authors say the state of knowledge about the “producibility” of gas hydrates is similar to the understanding that scientists and engineers had about coal-bed and oil sand methane extraction three decades ago. In both cases, it took these fuel sources several decades to become commercially viable.

The gas hydrates, which are comprised predominantly of methane, are formed from the heating of organic material deep beneath the surface. The gases rise and mix with water, creating the hydrates, which are found both in the Arctic permafrost and beneath it.

How much methane there is, the extent to which it is a hydrocarbon resource and the properties of this complex geologic environment are puzzles worth exploring, Colwell said.

“We don’t know much about these hydrates, particularly those beneath the permafrost layer,” Colwell said. “We need to characterize the chemical, physical and biological nature of all levels of the permafrost and below so we understand how the entire system works in this sensitive environment.”

Provided by OSU College of Oceanic and Atmospheric Sciences

Explore further: Remote assessment of avalanche risk

Related Stories

China looks to 'combustible ice' as a fuel source

Mar 12, 2010

(PhysOrg.com) -- Buried below the tundra of China’s Qinghai-Tibet Plateau is a type of frozen natural gas containing methane and ice crystals that could supply energy to China for 90 years. China discovered ...

Methane is leaking from permafrost offshore Siberia

Dec 22, 2014

Yamal Peninsula in Siberia has recently become world famous. Spectacular sinkholes, appeared as out of nowhere in the permafrost of the area, sparking the speculations of significant release of greenhouse ...

Recommended for you

Team reveals the first 'images' of thunder

1 hour ago

For the first time, scientists have imaged thunder, visually capturing the sound waves created by artificially triggered lightning. Researchers from Southwest Research Institute (SwRI) are presenting the ...

Yap Island typhoon warning in place for Noul

1 hour ago

Tropical Storm Noul is still threatening Yap Island located in the Caroline Islands of the western Pacific Ocean, and a part of the Federated States of Micronesia. Micronesia has posted a typhoon warning ...

NASA IMERG sees Australia's bicoastal rainfall

2 hours ago

The rainfall accumulation analysis above was computed from data generated by the Integrated Multi-satellite Retrievals for GPM (IMERG) during the period from April 28 to May 3, 2015. During this period IMERG ...

Remote assessment of avalanche risk

3 hours ago

In cooperation with a Swiss research team, geographers of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a novel measuring system relying on two different physical methods that promises to enhance forecasting ...

Tracking photosynthesis from space

4 hours ago

Watching plants perform photosynthesis from space sounds like a futuristic proposal, but a new application of data from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite may enable scientists to do just ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.