Panasonic Develops A Gallium Nitride (GaN) Power Device with A New Junction Structure

December 17, 2008

Panasonic today announced the development of a Gallium Nitride (GaN) -based diode with a new junction structure called "Natural Super Junction". The new GaN diode with low operating loss is applicable to a variety of consumer and industrial power switching systems.

The new junction structure consists of multilayered GaN-based semiconductor thin films with different compositions of which each interface produces fixed positive and negative charges by the material's unique polarization. The layered structure acts as an insulator at the reverse bias owing to the complete balancing of the fixed charges so that the breakdown voltage can be increased just by extension of the distance between the two electrodes.

The increase of the number of the multilayer resulting in the increase of the current channels effectively reduces the on-state resistances as well. The proposed device structure is similar to super junction of Si devices in which p-type and n-type layers are alternately stacked. The new junction structure does not require any precise control of the doping concentration in the layers as is necessary for the Si super junction. The high breakdown voltages can be achieved taking advantage of naturally formed fixed charges and thus it can be called natural super junction.

The new GaN-based diode exhibits high breakdown voltage of 9400 V with low on-state resistance of 52 mΩcm2, which reaches the predicted limitation by GaN-based semiconductors for the first time. It is also noted that Panasonic's proprietary formation technique of the electrodes over the recessed structure reduces the contact resistance between the electrodes and the current channels, which greatly helps to reduce the on-state resistances.

Applications for one hundred and twenty four domestic and eighty international patents have been filed. These research and development results have been presented at International Electron Devices Meeting 2008, held at San Francisco, U.S. from December 15 to 17, 2008.

Provided by Panasonic

Explore further: High Voltage DTMOS Power MOSFET Using A Super Junction Structure To Reduce Power Consumption

Related Stories

Super honeycomb shows more potential for carbon nanotubes

January 19, 2007

The hexagonal network structure makes these nanotubes look a bit like a honeycomb—or, when stretched a bit, like a hammock or fish net. In fact, the stretchiness of these 20-nm-long carbon nanotubes enables them to do what ...

Axons' unexpected cytoskeleton structure

January 28, 2013

(—The plasma membranes that give cells their shapes are typically upheld by linear meshworks of the protein actin. In contrast, Howard Hughes Medical Institute scientists have now discovered that periodic ring-shaped ...

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.

Dutch unveil giant vacuum to clean outside air

October 25, 2016

Dutch inventors Tuesday unveiled what they called the world's first giant outside air vacuum cleaner—a large purifying system intended to filter out toxic tiny particles from the atmosphere surrounding the machine.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.