Mutant proteins result in infectious prion disease in mice

Dec 05, 2008

A worldwide group of scientists has created an infectious prion disease in a mouse model, in a step that may help unravel the mystery of this progressive disease that affects the nervous system in humans and animals. The research team, including Christina J. Sigurdson, D.V.M., Ph.D., assistant professor of pathology at the University of California, San Diego School of Medicine, also discovered that changing the structure of the prion protein by altering just two nucleic acids leads to a fatal neurological disorder in mice. Their findings will be published on line in Proceedings of the National Academy of Sciences (PNAS) the week of December 1.

The study, led by Professor Dr. Adriano Aguzzi of the Institute of Neuropathology at the University of Zurich in Switzerland, was designed to investigate the specific changes in the prion protein that may contribute to chronic wasting disease (CWD). CWD is a highly infectious prion disease found in free-ranging deer and elk that is similar to bovine spongiform encephalopathy (BSE, or "mad cow disease") in cattle and Creutzfeldt-Jakob disease in humans. Prion diseases are thought to be a result of a misfolded form of the prion protein that induces formation of amyloid plaques in the brain – changes that are also seen in patients with Alzheimer's disease.

By altering two nucleic acids in the prion gene, the researchers developed a transgenic mouse model that expressed the mutant prion protein. These changes resulted in a "loop" in the protein structure of the mice that was rigid – similar to the structure of the elk prion protein, and unlike the flexible "loop" found in normal mouse or human prion proteins. Aging mice with the "rigid loop" prion protein accumulated plaques in the brain and developed symptoms of neurological disease that are features of prion-related disorders.

"It could be that this 'loop' region of the protein can promote the formation of amyloid plaques in the brain," said Sigurdson. "We also found that by transferring brain tissue from mice with the mutant protein into mice expressing the normal mouse prion protein, we could transmit the neurologic disease between the two groups of animals."

According to Sigurdson, the discovery that an infectious disease can be generated through just two mutations in the prion gene is of particular interest. "Some forms of prion disease in humans caused by genetic mutations have also been shown to be infectious," she said. "This new mouse model of the disease may be useful in our understanding of how the misfolded protein leads to neurodegeneration and for testing new therapies against prion disease."

Source: University of California - San Diego

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Solving the next step in the mystery of prions

Jun 25, 2015

Working towards the ultimate goal to develop therapeutics to treat diseases such as Alzheimer's, Parkinson's, ALS, and BSE (Mad Cow Disease), University of Alberta scientists Michael Woodside, Hao Yu, and Derek Dee are investigating ...

Grass plants can transport infectious prions

May 16, 2015

Grass plants can bind, uptake and transport infectious prions, according to researchers at The University of Texas Health Science Center at Houston (UTHealth). The research was published online in the latest ...

New sporadic prion protein disease identified

Aug 13, 2010

A new sporadic prion protein disease has been discovered. Variably protease-sensitive prionopathy (VPSPr), as it has been named, is the second type of complete sporadic disease to be identified since Creutzfeldt-Jakob disease ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.