Study links molecule to muscle maturation, muscle cancer

December 30, 2008
Study links molecule to muscle maturation, muscle cancer
Denis C. Guttridge, a researcher with Ohio State University's human cancer genetics program. Credit: Ohio State University Medical Center

Researchers at The Ohio State University Comprehensive Cancer Center have discovered that a molecule implicated in leukemia and lung cancer is also important in muscle repair and in a muscle cancer that strikes mainly children.

The study shows that immature muscle cells require the molecule, called miR-29, to become mature, and that the molecule is nearly missing in cells from rhabdomyosarcoma, a cancer caused by the proliferation of immature muscle cells.

Cells from human rhabdomyosarcoma tumors showed levels of the molecule that were 10 percent or less of those in normal muscle cells. Artificially raising the level of the molecule in the cancer cells cut their growth by half and caused them to begin maturing, slowing down tumor growth.

MiR-29 is a type of microRNA, a family of molecules that helps regulate the proteins cells produce. Researchers say this study is unusual because it also sheds light on the how a microRNA itself is regulated.

"This study shows that there is a connection between this microRNA, muscle development and rhabdomyosarcoma," says principal investigator Denis C. Guttridge, associate professor of molecular virology, immunology and medical genetics and a researcher with Ohio State's human cancer genetics program.

"The findings should give us a better understanding of muscle repair and development, and of rhabdomyosarcoma, and could lead to new treatments for this and other muscle diseases," he says.

The study is published in a recent issue of the journal Cancer Cell.

Guttridge and his colleagues discovered that the gene for miR-29 is silenced by the action of a protein, called NF-B (pronounced, NF kappa B). Their study shows that this protein is present at high levels in rhabdomyosarcoma cells, and that this keeps miR-29 shut off, preventing muscle progenitor cells from maturing.

When they raised the level of the microRNA molecule in the cells, or lowered the level of the NF-B protein, the cells' growth rate dropped two fold, and they began taking on the appearance of mature muscle cells. The modified cells also formed significantly smaller tumors when transplanted into an animal model than did typical rhabdomyosarcoma cells.

"High levels of the protein silence miR-29, which blocks differentiation, causing muscle cells to remain immature. If we can restore the levels of miR-29 in patients," Guttridge says, "it might provide a new therapy for this childhood cancer and perhaps other muscle diseases."

Source: Ohio State University Medical Center

Explore further: NASA study finds microgravity reduces regenerative potential of embryonic stem cells

Related Stories

How do astronauts keep fit in space?

November 23, 2015

Imagine being the first human to walk on Mars—for today's youngsters such ambitions could really materialise as humankind steps closer to the next cosmic frontier.

Shaping contraction

November 20, 2015

You were once a hollow shell. To sculpt that hollow ball into an organism with layers of internal organs, muscle and skin, portions of that embryonic 'shell' folded inwards. The same happens to fruit fly embryos, and researchers ...

How fast you move can predict how healthy you'll be

November 20, 2015

Instead of focusing on drawing out the length of life, South Korea's IBS Center for Plant Aging Research and the research group led by Coleen Murphy, a professor at Princeton University have created a tool that can be used ...

Using evolution to identify cell types

November 10, 2015

Despite similarities in form, function, and even DNA, cells that appear to be related may have traversed very different evolutionary paths. Science magazine spotlights a new approach to identifying cell types based on a recent ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.