Gold nanoparticles for controlled drug delivery

December 30, 2008
The top image shows a mixture of gold nanoparticles. The longer particles are called nanobones, and the smaller are nanocapsules. Bottom left: After the nanoparticles are hit with 800 nanometer wavelength infrared light, the nanocapsules melt and release their payload. Nanobones remain intact. Right: After the nanoparticles are hit with 1100 nanometer wavelength infrared light, the nanobones melt and release their payload. Nanocapsules remain intact. Image: Andy Wijaya

(PhysOrg.com) -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

Such a system could one day be used to provide more control when battling diseases commonly treated with more than one drug, according to the researchers.

"With a lot of diseases, especially cancer and AIDS, you get a synergistic effect with more than one drug," said Kimberly Hamad-Schifferli, assistant professor of biological and mechanical engineering and senior author of a paper on the work that recently appeared in the journal ACS Nano.

Delivery devices already exist that can release two drugs, but the timing of the release must be built into the device — it cannot be controlled from outside the body. The new system is controlled externally and theoretically could deliver up to three or four drugs.

The new technique takes advantage of the fact that when gold nanoparticles are exposed to infrared light, they melt and release drug payloads attached to their surfaces.

Nanoparticles of different shapes respond to different infrared wavelengths, so "just by controlling the infrared wavelength, we can choose the release time" for each drug, said Andy Wijaya, graduate student in chemical engineering and lead author of the paper.

The team built two different shapes of nanoparticles, which they call "nanobones" and "nanocapsules." Nanobones melt at light wavelengths of 1,100 nanometers, and nanocapsules at 800 nanometers.

In the ACS Nano study, the researchers tested the particles with a payload of DNA. Each nanoparticle can carry hundreds of strands of DNA, and could also be engineered to transport other types of drugs.

In theory, up to four different-shaped particles could be developed, each releasing its payload at different wavelengths.

Provided by Massachusetts Institute of Technology

Explore further: Chemotherapeutic coatings enhance tumor-frying nanoparticles

Related Stories

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

FBI: Surveillance flights by the book, rarely track phones

June 18, 2015

The FBI assured Congress in an unusual, confidential briefing that its plane surveillance program is a by-the-books operation short on high-definition cameras—with some planes equipped with binoculars—and said only five ...

World's smallest spirals could guard against identity theft

June 3, 2015

Take gold spirals about the size of a dime…and shrink them down about six million times. The result is the world's smallest continuous spirals: "nano-spirals" with unique optical properties that would be almost impossible ...

Mini laser for real-time quality control

June 1, 2015

Good quality and precision are essential – a dictum that also applies to products from the pharmaceutical and chemical industry. While the quality of chemical products is often still being monitored manually during the ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.