Gold nanoparticles for controlled drug delivery

December 30, 2008
The top image shows a mixture of gold nanoparticles. The longer particles are called nanobones, and the smaller are nanocapsules. Bottom left: After the nanoparticles are hit with 800 nanometer wavelength infrared light, the nanocapsules melt and release their payload. Nanobones remain intact. Right: After the nanoparticles are hit with 1100 nanometer wavelength infrared light, the nanobones melt and release their payload. Nanocapsules remain intact. Image: Andy Wijaya

( -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

Such a system could one day be used to provide more control when battling diseases commonly treated with more than one drug, according to the researchers.

"With a lot of diseases, especially cancer and AIDS, you get a synergistic effect with more than one drug," said Kimberly Hamad-Schifferli, assistant professor of biological and mechanical engineering and senior author of a paper on the work that recently appeared in the journal ACS Nano.

Delivery devices already exist that can release two drugs, but the timing of the release must be built into the device — it cannot be controlled from outside the body. The new system is controlled externally and theoretically could deliver up to three or four drugs.

The new technique takes advantage of the fact that when gold nanoparticles are exposed to infrared light, they melt and release drug payloads attached to their surfaces.

Nanoparticles of different shapes respond to different infrared wavelengths, so "just by controlling the infrared wavelength, we can choose the release time" for each drug, said Andy Wijaya, graduate student in chemical engineering and lead author of the paper.

The team built two different shapes of nanoparticles, which they call "nanobones" and "nanocapsules." Nanobones melt at light wavelengths of 1,100 nanometers, and nanocapsules at 800 nanometers.

In the ACS Nano study, the researchers tested the particles with a payload of DNA. Each nanoparticle can carry hundreds of strands of DNA, and could also be engineered to transport other types of drugs.

In theory, up to four different-shaped particles could be developed, each releasing its payload at different wavelengths.

Provided by Massachusetts Institute of Technology

Explore further: Chemotherapeutic coatings enhance tumor-frying nanoparticles

Related Stories

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Tracking catalytic reactions in microreactors

February 21, 2014

A pathway to more effective and efficient synthesis of pharmaceutical drugs and other flow reactor chemical products has been opened by a study in which for the first time the catalytic reactivity inside a microreactor was ...

Researchers develop chemically specialised germanium surface

March 8, 2013

Researchers at the Ruhr Universität Bochum have developed a new method for attaching proteins to the surface of germanium crystals – for the first time also membrane proteins. This enables time-resolved tracking of the ...

Recommended for you

Touchless displays superseding touchscreens?

October 2, 2015

While touchscreens are practical, touchless displays would be even more so. That's because, despite touchscreens having enabled the smartphone's advance into our lives and being essential for us to be able to use cash dispensers ...

Physicists map the strain in wonder material graphene

September 29, 2015

This week, an international group of scientists is reporting a breakthrough in the effort to characterize the properties of graphene noninvasively while acquiring information about its response to structural strain.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.