Researchers discover new enzyme in cancer growth

December 3, 2008

While studying the mechanics of blood clots, researchers at the University of Oklahoma Health Sciences Center discovered a new enzyme that not only affects the blood, but seems to play a primary role in how cancer tumors expand and spread throughout the body. The research appeared in recent issues of the journal Blood and the Journal of Thrombosis and Haemostasis.

A research group at OU led by Patrick McKee first discovered the enzyme called sFAP in plasma. After studying the biochemical makeup of the protein and identifying the gene that controlled its function, they began to search gene sequencing databases worldwide to find what it was. They didn't find the enzyme listed for blood, but got a match with a virtually identical protein known to cause cell growth in tissue, including in cancer. With McKee's discovery that the protein also exists in blood, scientists have a new avenue to study the spread of cancer.

"One thing all cancer cells need as they grow is something that acts as scaffolding. They have to attach to the scaffolding to divide and migrate. This enzyme excavates space around a malignancy and helps create the scaffolding," said McKee, M.D., principle investigator on the project.

The main function of the original FAP protein that was known to exist in tissue is to accelerate tissue growth and expand cells during fetal development, the healing of severe wounds and during growth of selected cancers such as breast, lung, pancreatic and colon.

Other than in these situations, the original form of FAP is not normally expressed in tissues at all. When it does appear, the protein helps activated fibroblasts, which growing cancer cells are able to recruit and stimulate to multiply within the malignancy itself. This creates space and the framework on which cancer cells attach, divide and eventually spread.

If FAP could be inhibited, then cancer growth could be slowed or halted, which in combination with chemotherapy or radiation might offer the potential to actually cure the malignancy, the OU team believes.

McKee and his group of investigators hold one patent on the enzyme and three more are under review for the development of an inhibitor. Based on the discovery and numerous publications of their work, the OU Health Sciences Center recently received a $365,000 federal grant from the U.S. Department of Defense to work on an inhibitor with cancer investigators at the University of Arkansas for Medical Sciences.

Source: University of Oklahoma

Explore further: Reprogramming the oocyte

Related Stories

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Molecular machine, not assembly line, assembles microtubules

August 20, 2015

When they think about how cells put together the molecules that make life work, biologists have tended to think of assembly lines: Add A to B, tack on C, and so on. But the reality might be more like a molecular version of ...

Team identifies structure of tumor-suppressing protein

August 20, 2015

An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN. Their findings provide ...

New simple proteins play active role in cellular function

August 11, 2015

Yale scientists have developed simple new proteins almost devoid of chemical diversity that still play a surprisingly active and specific role in cellular function, causing cells to act like cancer cells, they report Aug. ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.