Efficient organic LEDs a step toward better lights

December 23, 2008

(PhysOrg.com) -- For those who love "green" compact fluorescent bulbs but hate their cold light, here's some good news: Researchers are closer to flipping the switch on cheaper, richer LED-type room lighting.

University of Florida materials science and engineers have achieved a new record in efficiency of blue organic light-emitting diodes, or OLEDs. Because blue is essential to white light, the advance helps overcome a hurdle to lighting that is much more efficient than compact fluorescents — but can produce high-quality light similar to standard incandescent bulbs.

"The quality of the light is really the advantage," said Franky So, a UF associate professor of materials science and engineering and the lead investigator on the project.

The U.S. Department of Energy, which funded the research, reported the results on its Web site. Papers about it appeared earlier this year in the journal Applied Physics Letters.

OLEDs are similar to inorganic light emitting devices, or LEDs, but are built with organic semiconductors on large area glass substrates rather than inorganic semiconductor wafers. When used in display screens computer monitors, they have higher efficiency, better color saturation and a larger viewing angle. OLED displays are also used in cell phones, cameras and personal digital assistants. OLED flat panel TVs were introduced by Sony recently.

So and his team's blue OLED achieved a peak efficiency of 50 lumens — a lumen is a measure of brightness perceived by human eyes — per watt. That's a significant step toward the goal of his project: to achieve white light with efficiency higher than 100 lumens per watt.

So said the fact that OLEDs are highly "tunable" — each OLED is an individual light, which means differently colored OLEDs can be combined to produced different shades of light — puts warm, rich light easily within reach. "The quality of the light generated can easily be tuned by using different color emitters" he said. "You can make it red, green, blue or white."

Materials science engineering professor Paul Holloway and assistant professor Jiangeng Xue contributed to the research.

Provided by University of Florida

Explore further: Spintronics just got faster

Related Stories

Spintronics just got faster

July 20, 2015

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought.

Graphene quantum dot LEDs

June 15, 2015

The first graphene quantum dot light-emitting diodes (GQD-LEDs), fabricated by using high-quantum-yield graphene quantum dots through graphite intercalation compounds, exhibit luminance in excess of 1,000 cd/m2.

LG Chem ups bending radius in OLED lighting milestone

January 29, 2015

South Korea-based LG Chem continues to work on the potential of OLED technology. Tom Dawson, editor in chief of AndroidHeadlines, said, "LG has quickly become a name when it comes to flexible OLED displays and if there's ...

Recommended for you

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

lengould100
5 / 5 (1) Dec 29, 2008
Just to qualify, typical white LED's now available on the market (20 Lumens/watt) are not much more efficient than incandescent (10 L/w), while CFL's are typically MUCH better (75-80 L/w)

The distant future MAY improve LED's but the CFL is immediately available in a fairly broad spectrum of colour temperatures.

http://www.eetime...89501072

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.