Researchers derive first embryonic stem cells from rats

December 24, 2008

Researchers at the University of Southern California (USC) have, for the first time in history, derived authentic embryonic stem (ES) cells from rats. This breakthrough finding will enable scientists to create far more effective animal models for the study of a range of human diseases.

The research will be published in the Dec. 26 issue of the journal Cell.

"This is a major development in stem cell research because we know that rats are much more closely related to humans than mice in many aspects of biology. The research direction of many labs around the world will change because of the availability of rat ES cells," says Qi-Long Ying, Ph.D., assistant professor of Cell and Neurobiology at the Keck School of Medicine of USC, researcher at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the study's principal investigator.

The finding brings scientists much closer to creating "knockout" rats—animals that are genetically modified to lack one or more genes—for biomedical research. By observing what happens to animals when specific genes are removed, researchers can identify the function of the gene and whether it is linked to a specific disease.

"Without ES cells it is impossible to perform precise genetic modifications for the creation of the disease model we want," he says. "The availability of rat ES cells will greatly facilitate the creation of rat models for the study of different human diseases, such as cancer, diabetes, high blood pressure, addiction and autoimmune diseases."

Ying, a native of China, notes that this breakthrough research occurred during 2008, the Chinese year of the rat.

Embryonic stem cells are derived from a group of cells called the inner cell mass in a very early stage embryo. ES cells provide researchers with a valuable tool to address fundamental biological questions, because they enable scientists to study how genes function, and to develop animals with conditions that mimic important human diseases.

The first ES cell lines were established from mice in 1981 by Martin Evans of Cardiff University, UK, who was last year awarded the Nobel Prize in Medicine or Physiology. Researchers have long been working on establishing rat ES cells, but faced technical hurdles because the conventional methods developed for the derivation of mouse cells did not work in rats.

Building on recent research into how ES cells are maintained, the USC researchers found that rat ES cells can be efficiently derived and grown in the presence of the "3i medium," which consists of molecules that inhibit three specific gene signaling components (GSK3, MEK and FGF receptor kinase). This approach insulates the stem cell from signals that would normally cause it to differentiate, or turn into specialized types of body cells. By blocking these signals, Ying and colleagues found that stem cells from rats, which have previously failed to propagate at all, could be grown indefinitely in the laboratory in the primitive embryonic state.

An accompanying study led by researchers at the University of Cambridge, U.K., reported similar findings, independently verifying that authentic ES cells can be established from rats. Both papers will be published in the upcoming issue of Cell.

"The development of rat embryonic stem cells, long sought by researchers around the world, is a major advance in biomedical science," says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. "These new stem cell lines will make a huge contribution to basic and applied research and drug development, by providing a technology platform for facile genetic manipulation of a mammalian species that is widely used in academic and industrial labs studying physiology, pathology and pharmacology."

Until now, authentic ES cells have never been established from humans or animals other than mice. This new key understanding into how ES cells are maintained in culture may eventually enable scientists to establish real ES cell lines from a number of other mammals, which could have significant implications for organ transplantations and the development of drug therapies, Ying says. Researchers at USC are currently working on generating the first gene knockout rat through ES cell-based technologies.

"If our work is feasible it is likely that many labs will follow up to generate different types of gene knockout rat models," he says. "This will have a major impact on the future of biomedical research."

Paper: Ping Li, Chang Tong, Ruty Mehrian-Shai, Li Jia, Nancy Wu, Youzhen Yan, Eric N. Schulze, Houyan Song, Chih-Lin Shieh, Martin F. Pera, Qi-Long Ying. "Germline Competent Embryonic Stem Cells Derived from Rat Blatocysts." Cell. D-08-01205R2.

Source: University of Southern California

Explore further: Are embryonic stem cells and artificial stem cells equivalent?

Related Stories

The self-made eye: Formation of optic cup from ES cells

April 6, 2011

Groundbreaking research from the RIKEN Center for Developmental Biology (CDB) shows how mouse stem cells spontaneously form into optic cups, the precursors of eyes. A report on this research, published this week in Nature, ...

Novel factor behind ES cells' neural default

March 16, 2011

Embryonic stem cells (ESCs) are highly regarded for their ability to give rise to the full range of cellular lineages found in the adult body, but left to their own devices ESCs tend to differentiate into neural lineages. ...

Human ES cells progress slowly in myelin's direction

April 9, 2009

Scientists from the University of Wisconsin, USA, report in the journal Development the successful generation from human embryonic stem cells of a type of cell that can make myelin, a finding that opens up new possibilities ...

Recommended for you

Fighting climate change with 'poop power'

December 2, 2015

The stench of clogged toilets fills the air at the US capital's wastewater treatment facility. And for good reason—it's one of the world's largest projects to transform human waste into electricity.

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.