Researchers create new class of fluorescent dyes to detect reactive oxygen species in vivo

December 15, 2008
Confocal fluorescent images of rat aortic smooth muscle cells (a) incubated with hydro-Cy3, (b) treated with angiotensin II and incubated with hydro-Cy3, and (c) incubated with angiotensin II and TEMPOL before adding hydro-Cy3. Credit: Georgia Tech Image: Courtesy of Kousik Kundu

Researchers have created a new family of fluorescent probes called hydrocyanines that can be used to detect and measure the presence of reactive oxygen species. Reactive oxygen species are highly reactive metabolites of oxygen that have been implicated in a variety of inflammatory diseases, including cancer and atherosclerosis.

"We've shown that the hydrocyanines we developed are able to detect the reactive oxygen species, superoxide and the hydroxide radical, in living cells, tissue samples, and for the first time, in vivo," said Niren Murthy, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

A new family of reactive oxygen species (ROS) probes -- called hydrocyanines -- is synthesized by reducing a cyanine dye with sodium borohydride. Reacting with an ROS oxidizes the hydrocyanines into fluorescent cyanine dyes. Georgia Tech Image: Courtesy of Kousik Kundu

Details of the hydrocyanine synthesis process and experimental results showing the ability of the dyes to detect reactive oxygen species in cells, tissues and mouse models were reported on December 8 in the online version of the journal Angewandte Chemie International Edition. This research is supported by the National Institutes of Health and the National Science Foundation.

The researchers have created six hydrocyanine dyes to date – hydro-Cy3, hydro-Cy5, hydro-Cy7, hydro-IR-676, hydro-IR-783 and hydro-ICG – but say that there are potentially 40 probes that could be created. The dyes vary in their ability to detect intracellular or extracellular reactive oxygen species and by their emission wavelength – from 560 to 830 nanometers.

Fluorescing at higher wavelengths allows the hydrocyanine dyes to be used for deep tissue imaging in vivo, a capability that dihydroethidium (DHE), the current "gold standard" for imaging reactive oxygen species, does not have. The dyes also have other advantages over DHE.

"When DHE comes into contact with reactive oxygen species, it oxidizes into ethidium bromide, a common mutagen, which means it's toxic and can't be injected inside the body," explained Murthy. "DHE also auto-oxidizes in the presence of aqueous solutions, which creates high levels of background fluorescence and interferes with reactive oxygen species measurements."

Hydrocyanines are also simple and quick to synthesize, according to Coulter Department postdoctoral fellow Kousik Kundu. Sodium borohydride is added to commercially available cyanine dyes and the solvent is removed – the one-step process takes less than five minutes.

W. Robert Taylor, a professor in the Coulter Department and Emory's Division of Cardiology, and Emory postdoctoral fellow Sarah Knight, tested the ability of the dyes to detect reactive oxygen species inside of cells and animals.

For their first experiment, they tested the ability of hydro-Cy3, which has an emission wavelength of 560 nanometers, to detect reactive oxygen species production in the aortic smooth muscle cells of rats. They incubated the cells with hydro-Cy3 and angiotensin II, which is a stimulator of reactive oxygen species that is implicated in the development of atherosclerosis and hypertension.

Results showed that cells incubated with angiotensin II and hydro-Cy3 displayed intense intracellular fluorescence, whereas control cells incubated with hydro-Cy3 and phosphate buffer saline displayed significantly lower fluorescence. When they introduced TEMPOL, a molecule that intercepts the reactive oxygen species so that they cannot interact, the cells treated with angiotensin II and hydro-Cy3 displayed a dramatic decrease in fluorescence.

"This test demonstrated that the cellular fluorescence was due to intracellular reactive oxygen species production," said Murthy. "What was even more exciting was that we saw that once the hydrocyanine dye was oxidized, it stayed in the cell and the fluorescence was not extinguished by cellular metabolism, which is what happens with DHE."

The researchers also investigated the ability of hydro-Cy3 to image reactive oxygen species production in live mouse aorta tissue, which exhibit a physiological environment that closely resembles in vivo conditions. Explants were incubated with hydro-Cy3 and either lipopolysaccharide endotoxin (LPS), an inflammatory molecule that binds to aortic cells and causes reactive oxygen species to be produced, or the control saline solution.

Samples treated with hydro-Cy3 and LPS showed fluorescence intensity almost four times greater than explants treated with hydro-Cy3 and saline. Once more, adding TEMPOL to the sample with hydro-Cy3 and LPS decreased the fluorescence to a level comparable to the control saline explants.

After the successful cell culture and tissue experiments, the researchers progressed to in vivo mouse imaging studies. Hydro-Cy7 was selected for the in vivo tests because of its higher emission wavelength of 760 nanometers. LPS-treated mice showed twofold greater fluorescence intensity in the abdominal area than those treated with saline.

"Given their ability to detect reactive oxygen species in living cells, tissue samples and in vivo, we believe these dyes will enhance the ability of researchers to measure reactive oxygen species," noted Murthy.

The researchers' ultimate goal, though, is to use the dyes in clinical applications.

"We want to use these hydrocyanine dyes to detect overproduction of reactive oxygen species at an early stage inside the body so that we can identify patients who are more likely to suffer from these inflammatory diseases," added Murthy.

Source: Georgia Institute of Technology

Explore further: Mars will come to fear my botany powers

Related Stories

Mars will come to fear my botany powers

November 10, 2015

NASA seems to believe that making space habitable will require more finesse than Elon Musk's "let's nuke Mars" plan, and has funded a couple of synbio projects which seek to provide "the means to produce food, medical supplies ...

Clay makes better high-temp batteries

November 10, 2015

A unique combination of materials developed at Rice University, including a clay-based electrolyte, may solve a problem for rechargeable lithium-ion batteries destined for harsh environments.

New class of DNA repair enzyme discovered

October 29, 2015

This year's Nobel Prize in chemistry was given to three scientists who each focused on one piece of the DNA repair puzzle. Now a new study, reported online Oct. 28 in the journal Nature, reports the discovery of a new class ...

Chemistry in mold reveals important clue for pharmaceuticals

November 2, 2015

In a discovery that holds promise for future drug development, scientists have detected for the first time how nature performs an impressive trick to produce key chemicals similar to those in drugs that fight malaria, bacterial ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 16, 2008
Long, long ago a doctor won a Nobel prize for "Cancer Cause And Cure" involving adverse
forms of Oxygen. I believe his name was "Walberg"
I thought he had something then, and still do!
Outer orbit electron speed & spin are suspect!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.