Chemist receives NIH funding to unravel tricks of neuronal wiring

December 29, 2008

Joshua Maurer, Ph.D., assistant professor of chemistry in Arts & Sciences, has received a four-year, $1,216,000 grant from the National Institute of Mental Health for research titled "Unraveling Development: New Materials for Understanding Neuronal Wiring."

Maurer's long term objective is to develop methodology that allows the study of a variety of neuronal wiring processes. He is starting by unscrambling a phenomenon known as midline crossing using zebrafish. During development, neurons from the right eye cross the midline of the brain to make a connection in the left hemisphere.

"Our goal is to build a substrate that looks like what a growing neuron would encounter in the brain as it goes from the eye to where it has to make its final connection in order to do a feedback response," Maurer explained. "We want to replicate the interactions (in the brain) on a glass surface by laying down a series of molecules with nanoscopic control. Then we can watch in real time, with a microscope, how a neuron is guided through this pattern."

Their findings could help explain more about the fundamentals of nerve damage and enable better nerve repair some day.

They are developing strategies that give "robust, stable" surfaces that can be studied for weeks. Current techniques give surfaces with limited stability, around 5 days. "We have recently published new patterning techniques that allow us to build protein patterns directly on glass and are just starting to meet our goals of building complex systems," Maurer said.

Traditionally, to elucidate a protein's role in a known pathway, scientists make a "knockout" animal by inactivating the gene that codes for the protein and observing the resulting effect in the animal. However, this technique cannot be used to study proteins involved in development because these proteins can have multiple functions.

"If you knock out a developmental protein, there is a potential that you affect some upstream event so you never do the event you are interested in," Maurer said.

Maurer's neuronal "road map" overcomes this problem by isolating the guidance system from the zebrafish's neurobiological milieu. By watching the neuron grow in real time, he will be able to determine exactly which proteins tell the neuron to turn left, right, or stop.

Knowledge gained in these studies could be applied to reconnecting severed nerves in humans. "This eye crossing event happens in every organism with two eyes. Last time I checked that was all of them. I don't see any cyclopses wandering around," Maurer said.

Source: Washington University in St. Louis

Explore further: Sensory illusion causes cells to self-destruct

Related Stories

Sensory illusion causes cells to self-destruct

November 19, 2015

Magic tricks work because they take advantage of the brain's sensory assumptions, tricking audiences into seeing phantoms or overlooking sleights of hand. Now a team of UC San Francisco researchers has discovered that even ...

Scientists discover master regulator of motor neuron firing

March 16, 2009

( -- When the Human Genome Project was complete, DNA bowed out of the limelight and gave way to RNA as a major player in genetic regulation. Now, findings at Rockefeller University mirror this ideological shift, ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.