Cancer-fighting antibodies

December 22, 2008
Dane Wittrup. Photo / Donna Coveney

(PhysOrg.com) -- MIT engineers have found that antibodies do not need a particular sugar attachment long believed to be essential to their function, a discovery that could make producing therapeutic antibodies much easier and cheaper in the future.

Therapeutic antibodies are a promising new type of treatment for cancer and other diseases, but their practicality has been limited by the fact that only mammalian cells have the right machinery to build the sugar attachment.

"To date, people have faced limitations in how they were going to make these antibodies because they appeared to require these (sugar) structures," said Dane Wittrup, the C.P. Dubbs Professor of Chemical Engineering, Biological Engineering, member of the Koch Institute for Integrative Cancer Research, and senior author of a paper on the work that appeared in the Dec. 12 online edition of the Proceedings of the National Academy of Sciences.

Wittrup and biological engineering graduate student Stephen Sazinsky, co-lead author of the paper, found that antibodies don't need the sugar normally found attached to a certain region of antibody when the sequence is slightly mutated.

Antibodies are a key part of the immune system, roaming around the body to detect invaders such as bacteria and viruses. Each antibody is specific to a particular pathogen. When an antibody finds its target, it first binds to the pathogen, then binds to immune cells, alerting them to attack the pathogen.

The attached sugar was believed necessary to allow antibodies to bind to immune cells, such as NK (natural killer) cells and macrophages. However, the MIT team found that mutant forms of the antibody with no sugar were also able to bind to immune cells.

Knowing this, scientists will now be able to develop therapeutic antibodies that can be mass-produced by bacteria or fungi, a process that is cheaper and faster than using mammalian cells.

There are now dozens of FDA-approved antibody treatments, and hundreds more are in clinical trials. Such therapeutic antibodies can be used to treat cancer, autoimmune diseases, cardiovascular disease and many others.

The new discovery also raises the question of why the sugars are attached to antibodies in the first place. Sazinsky theorizes that the sugar has been evolutionarily conserved as a way for the immune system (and now scientists) to tinker with the binding affinities of different antibodies.

Other authors of the paper are co-lead author Rene Ott of Rockefeller University; Nathaniel Silver, an MIT graduate student in chemistry; Bruce Tidor, MIT professor of biological engineering and computer science; and Jeffrey Ravetch of Rockefeller University.

Provided by MIT

Explore further: Pills of the future: Scientists develop way to successfully give nanoparticle therapeutics orally

Related Stories

Nanosensors could aid drug manufacturing

August 16, 2013

MIT chemical engineers have discovered that arrays of billions of nanoscale sensors have unique properties that could help pharmaceutical companies produce drugs—especially those based on antibodies—more safely and efficiently.

Nano-implant measures tumor growth, treatment

December 5, 2006

A tiny implant now being developed at MIT could one day help doctors rapidly monitor the growth of tumors and the progress of chemotherapy in cancer patients. The implant contains nanoparticles that can be designed to test ...

Recommended for you

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.