Clothing with a brain: 'Smart fabrics' that monitor health

December 8, 2008
Researchers have developed a cost-effective procedure of making disease-detecting wearable fabrics, "smart fabrics." Above are microscopic images of the E-fibers. Credit: Credit: American Chemical Society

Researchers in United States and China are reporting progress toward a simple, low-cost method to make "smart fabrics," electronic textiles capable of detecting diseases, monitoring heart rates, and other vital signs.

A report on these straight-out-of-science-fiction-fibers, made of carbon nanotubes, is scheduled for the December 10 issue of ACS' Nano Letters.

In the new study, Nicholas A. Kotov, Chuanlai Xu, and colleagues point out that electronic textiles, or E-textiles, already are a reality. However, the current materials are too bulky, rigid, and complex for practical use. Fabric makers need simpler, more flexible materials to make E-fibers practical for future applications, they say.

The scientists describe development of cotton fibers coated with electrolytes and carbon nanotubes (CNT) — thin filaments 1/50,000 the width of a single human hair. The fibers are soft, flexible, and capable of transmitting electricity when woven into fabrics.

In laboratory tests, the researchers showed that the new E-fibers could light up a simple light-emitting diode when connected to a battery. When coated with certain antibodies, the fibers detected the presence of albumin, a key protein in blood — a function that could be used to detect bleeding in wounded soldiers. The fabrics could also help monitor diseases and vital signs, they say.

Article: "Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes", pubs.acs.org/stoken/presspac/presspac/full/10.1021/jf8016095

Provided by American Chemical Society

Explore further: Nanotechnology research leads to super-elastic conducting fibers

Related Stories

Tiny wires could provide a big energy boost

July 7, 2015

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit ...

New capability takes sensor fabrication to a new level

June 30, 2015

Operators must continually monitor conditions in power plants to assure they are operating safely and efficiently. Researchers on the Sensors and Controls Team at DOE's National Energy Technology Laboratory can now fabricate ...

Billionaires aim for cheaper spaceflight

June 4, 2015

In the booming commercial space business, ventures founded by tech billionaires Jeff Bezos, Elon Musk and Paul Allen are reinventing the most expensive aspect - launching spacecraft into orbit.

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The diamond-like structural ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.