Controlling the building blocks of life

Dec 10, 2008
Controlling the building blocks of life

( -- A simple and reliable method for converting one of the simplest chemical entities into one of the most difficult-to-make molecular building blocks of life, with complete control over its shape, is reported by scientists at the University of Bristol in this week's Nature [11 December].

It will have major implications for the synthesis of drugs and agrochemicals.

Many important molecules required for life exist in two forms that are mirror images of each other – like our left and right hands. This property is called ‘chirality’, from the Greek word for hand, and the two forms are called ‘enantiomers’, from the Greek word for opposite.

The classic example of the drug thalidomide illustrates the difference in biological response to chiral molecules: one of the two enantiomers caused devastating birth defects, whereas its mirror image had the desired sedative properties that doctors’ prescribed it for.

Since this catastrophe, and the subsequent recognition of the importance of the relationship between a small molecule (for example a drug) and its site of action (for example a protein), it has become necessary to test individual enantiomers and not mixtures of the two forms. But a mixture of enantiomers can be very difficult to separate.

Professor Varindar Aggarwal at the University of Bristol has now developed a simple and reliable method for converting one of the simplest chemical entities into one of the most difficult-to-make molecular building blocks of life, with complete control over its shape.

Professor Aggarwal explained the importance of this work: “We live in a chiral world. Indeed, chirality and life are so inextricably linked that the detection of chirality outside our planet is used as a test for extraterrestrial life.

“It is the shape and function of a molecule that gives rise to its properties. For example, the different smell of oranges and lemons comes from two molecules, identical except for their three-dimensional spatial arrangement. Thus being able to control the shape and function of enantiomers is critical to the many applications of organic chemical synthesis.”

This work is likely to find broad application in the synthesis of complex organic molecules, particularly in pharmaceuticals and agrochemicals where such difficult shapes are often encountered.

Aggarwal and colleagues have developed a two-step process that can be used to convert readily available secondary alcohols into single mirror image forms of tertiary alcohols that contain a quaternary stereogenic centre (a carbon atom with four different non-hydrogen substituents). Either mirror image of the tertiary alcohol can be made with very high levels of control over its shape.

Provided by University of Bristol

Explore further: Researchers find 'decoder ring' powers in micro RNA

Related Stories

Savannahs slow climate change

May 21, 2015

Tropical rainforests have long been considered the Earth's lungs, sequestering large amounts of carbon dioxide from the atmosphere and thereby slowing down the increasing greenhouse effect and associated human-made climate ...

I sprint for exercise: NASA's iRAT study

May 19, 2015

Run far or run fast? That is one of the questions NASA is trying to answer with one of its latest studies—and the answers may help keep us in shape on Earth, as well as in space. Even with regular exercise, ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

How olive oil is processed

May 15, 2015

The olive tree is native to the Mediterranean basin. Archeological evidence shows that olive oil was produced as early as 4000 BC. Besides food, olive oil was used historically for medicine, lamp fuel, soap, ...

Recommended for you

New chip makes testing for antibiotic-resistant bacteria faster, easier

15 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Researchers find 'decoder ring' powers in micro RNA

17 hours ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

21 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

Use your smartphone for biosensing

23 hours ago

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.