Astronomers use ultra-sensitive camera to measure size of planet orbiting star

December 11, 2008
When the planet WASP-10b crosses the disk of its star, WASP-10, the brightness of the star decreases, allowing scientists to measure the precise size of the planet. Credit: Institute for Astronomy, University of Hawaii at Manoa

A team of astronomers led by John Johnson of the University of Hawaii's Institute for Astronomy has used a new technique to measure the precise size of a planet around a distant star. They used a camera so sensitive that it could detect the passage of a moth in front of a lit window from a distance of 1,000 miles.

The camera, mounted on the UH 2.2-meter telescope on Mauna Kea, measures the small decrease in brightness that occurs when a planet passes in front of its star along the line-of-sight from Earth. These "planet transits" allow researchers to measure the diameters of worlds outside our solar system.

"While we know of more than 330 planets orbiting other stars in our Milky Way galaxy, we can measure the physical sizes of only the few that line up just right to transit," explains Johnson. The team studied a planet called WASP-10b, which was thought to have an unusually large diameter. They were able to measure its diameter with much higher precision than before, leading to the finding that it is one of the densest planets known, rather than one of the most bloated. The planet orbits the star WASP-10, which is about 300 light-years from Earth.

IfA astronomer John Tonry designed the camera, known as OPTIC (Orthogonal Parallel Transfer Imaging Camera), and it was built at the IfA. It uses a new type of detector, an orthogonal transfer array, the same type used in the Pan-STARRS 1.4 Gigapixel Camera, the largest digital camera in the world. These detectors are similar to the CCDs (charge-coupled devices) commonly used in scientific and consumer digital cameras, but they are more stable and can collect more light, which leads to higher precision.

"This new detector design is really going to change the way we study planets. It's the killer app for planet transits," said team member Joshua Winn of MIT. The precision of the camera is high enough to detect transits of much smaller planets than previously possible. It measures light to a precision of one part in 2,000. For the first time, scientists are approaching the precision needed to measure transits of Earth-size planets.

Bigger planets block more of the star's surface and cause a deeper brightness dip. The diameter of WASP-10b is only 6 percent larger than that of Jupiter, even though WASP-10b is three times more massive. Correspondingly, its density is about three times higher than Jupiter's. Because their interiors become partially degenerate, Jovian planets have a nearly constant radius across a wide range of masses.

The photometric precision is three to four times higher than that of typical CCDs and two to three times higher than the best CCDs, and comparable to the most recent results from the Hubble Space Telescope for stars of the same brightness.

The scientific paper presenting this discovery will be published in the Astrophysical Journal Letters. A preprint is available on the Web at arxiv.org/abs/0812.0029 .

Source: University of Hawaii at Manoa

Explore further: Novel technique allows scientists to look deep into rocky planets in the lab

Related Stories

Flickr photo data used to predict people's locations

August 12, 2015

A team of researchers with University College in England has found a way to use photo information attached to images uploaded to the sharing site Flickr to create an application that can predict where people will be at a ...

SpaceVR aims toward a VR camera in space

August 11, 2015

SpaceVR is a virtual reality platform set to share live 3D, 360 degree content from the International Space Station (ISS) so that anyone with virtual reality gear can feel like an astronaut. The company was founded in January ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

Comet Hitchhiker would take tour of small bodies

September 2, 2015

Catching a ride from one solar system body to another isn't easy. You have to figure out how to land your spacecraft safely and then get it on its way to the next destination. The landing part is especially tricky for asteroids ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Hoarsesenz
1.3 / 5 (3) Dec 11, 2008
Event 1: An earth size planet is discovered with water in the atmosphere.

Event 2 (later that same year): US and ESA and Chinese and Japanese and Russian space program funding is increased by an order of magnitude.
theophys
2.3 / 5 (3) Dec 12, 2008
Event 1: An earth size planet is discovered with water in the atmosphere.

Event 2 (later that same year): US and ESA and Chinese and Japanese and Russian space program funding is increased by an order of magnitude.

Yay for funding!
Thecis
1 / 5 (1) Dec 12, 2008
This could be a possibility.
Yet, it might be some time before that. The planets found until now are about the size of Jupiter! the diameter of earth is roughly 11 times smaller. The way we would see such a planet is 11^2 = 121 times smaller!
It would take a much more senstive camera to be able to see that one.
Not to mention the following situation: what happens if a earth like planet AND a jupiter like planet would go in front of a star? How would we know the measurement would be influenced by a planet that is 120 times smaller. At this moment the fluctuation would be considered as noise and not taken into account.
Like I stated earlier. It will be possible but with a much more sensitive camera. After that, it might be possible to detect water etc. with spectroscopic techniques that will be improved also at that time.
When that has happened I also hope that space programs will be funded more than they are now. And I hope they will work together as well...
denijane
2.5 / 5 (2) Dec 15, 2008
I'm not entirely sure, however, where ESA or NASA would get the money from, even if they discover such planet tomorrow. So, I think this research is more a marvellous example of what we can do with what we have, than just a publicity stunt aiming at the money.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.