Shape changes in aroma-producing molecules determine the fragrances we detect

December 22, 2008

Shakespeare wrote "a rose by any other name would smell as sweet." But would it if the molecules that generate its fragrance were to change their shape?

That's what Dr. Kevin Ryan, Assistant Professor of Chemistry at The City College of New York (CCNY) and collaborators in the laboratory of Dr. Stuart Firestein, Professor of Biology at Columbia University, set out to investigate. Their findings, reported today in the journal "Chemistry & Biology," shed new insight into how our sense of smell works and have potential applications in the design of flavors and fragrances.

When odor-producing molecules, known as odorants, pass through the nose, they trigger intracellular changes in a subset of the approximately 400 different varieties olfactory sensory neurons (OSN) housed in the nose's internal membrane tissue, Professor Ryan explained. The unique reaction pattern produced, known as the olfactory code, is sent as a signal to the brain, which leads to perception of odors.

Professor Ryan and his team wanted to learn how these receptor cells respond when odorants change their shape. They studied the odorant octanal, an eight-carbon aldehyde that occurs in many flowers and citrus fruits. Octanal is a structurally flexible molecule that can adapt to many different shapes by rotating its chemical bonds.

The researchers designed and synthesized eight-carbon aldehydes that resembled octanal, but had their carbon chains locked by adding one additional bond. These molecules were tested on genetically engineered OSNs known to respond to octanal. This work was done in Professor Firestein's laboratory at Columbia.

The aldehyde molecules that could stretch to their greatest length triggered strong activity in the OSNs. However, those molecules whose carbon chains were constrained into a U shape blocked the receptor and left the cell unable to sense octanal.

"Conformationally constrained odorants were more selective in the number of OSNs they activated," Professor Ryan noted. "The results indicate that these odorant molecules might be able to alter fragrance mixture odors in two ways: by muting the activity of flexible odorants present in a mixture and by activating a smaller subset of OSNs than chemically related flexible odorants. This would produce a different olfactory code signature."

Olfactory receptors belong to the G-protein coupled receptor (GPCR) class of proteins, a family of molecules found in cell membranes throughout the body. Professor Ryan pointed out that half of all commercial pharmaceuticals work by interaction with proteins within this family. Thus, the findings could also have applications to GPCR drug design, as well.

Source: City College of New York

Explore further: A new method of converting algal oil to transportation fuels

Related Stories

A new method of converting algal oil to transportation fuels

June 15, 2015

A new method of converting squalene, which is produced by microalgae, to gasoline or jet fuel, has been developed by the research group of Professor Keiichi Tomishige and Dr. Yoshinao Nakagawa from Tohoku University's Department ...

Catalyst removes cancer-causing benzene in gasoline

June 8, 2015

Northwestern University scientists are experimenting with ways to eliminate a cancer-causing agent from gasoline by neutralizing the benzene compound found in gasoline. They developed a catalyst that effectively removed benzene ...

Chemists discover way nose perceives common class of odors

September 10, 2014

Biologists claim that humans can perceive and distinguish a trillion different odors, but little is known about the underlying chemical processes involved. Biochemists at The City College of New York have found an unexpected ...

Recommended for you

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.