New technique enables assessment of drought performance

November 12, 2008

Measurement of chlorophyll fluorescence is an effective way of determining how well plants can cope with low-water conditions. The technique described in the open access journal Plant Methods, published by BioMed Central, allows a quantitative and precise determination of viability in intact, drought-stressed plants.

Due to the increasing demands of industrial, municipal and agricultural consumption on dwindling water supplies, botanists are increasingly engaged in efforts to cultivate plants that have low water requirements. Barry Pogson led a team of researchers from the Australian National University who investigated whether chlorophyll fluorescence could be used in the assessment of plant water status during such studies. He said "We found that plants' viability during increasing water deficit could be measured and quantified by measuring changes to the maximum efficiency of photosystem II (Fv/Fm), and that this was easily measurable by chlorophyll fluorometry."

Other methods of assessing plants' performance under water deficit have serious drawbacks. Methods that involve detaching parts of the plant are destructive and survival studies rely on qualitative observation of physical symptoms of water deficit stress such as turgor loss, chlorosis, and other qualities that can vary greatly between specimens and are also sensitive to experimental conditions. Chlorophyll fluorescence is non-invasive and minimal technical expertise and a basic understanding of fluorometry. Pogson said "By correlating the decline in the Fv/Fm parameter to loss of viability, our procedure allows the monitoring of survival under water deficit conditions, namely defining a threshold of 33% of well-watered Fv/Fm values."

This procedure may complement existing methods of evaluating drought performance while also increasing the number of tools available for assessment of other plant stresses.

Source: BioMed Central

Explore further: Shedding light on potential toxins that lurk in blood and breast milk

Related Stories

Taking the temperature of water-thirsty plants

August 28, 2015

When crops get thirsty, they get hot. Scientists can use canopy temperatures to determine if crops are water stressed. An Agricultural Research Service engineer in Colorado has found a way to simplify this process for farmers. ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

Regulating poinsettia's height

April 6, 2015

The height and size of ornamental plants such as poinsettia are important concerns for producers. Plant height is crucial both aesthetically and in regards to postharvest handling. To produce plants that meet desired heights, ...

UM researcher helps NASA get the dirt on soil moisture

January 15, 2015

During the early-morning hours on Tuesday, Jan. 29, NASA will launch a satellite that will peer into the topmost layer of Earth's soils to measure the hidden waters that influence our ecosystems weather and climate.

Toward a networked energy future

October 29, 2014

February 1, 2050, is a good day for German electricity consumers. The breeze off the north coast is blowing so strongly that offshore wind farms and the wind turbines on land are running non-stop. Since it's a sunny day, ...

Recommended for you

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.