Tale of two snails reveals secrets about the biochemistry of evolution

November 3, 2008
A study of two populations of marine snails provides new insights into how evolutionary changes works on the chemical level. Credit: American Chemical Society

Researchers in Spain are reporting deep new insights into how evolution changes the biochemistry of living things, helping them to adapt to new environments. Their study, based on an analysis of proteins produced by two populations of marine snails, reveals chemical differences that give one population a survival-of-the fittest edge for life in its cold, wave-exposed environment. Their report is scheduled for the November 7 issue of ACS' Journal of Proteome Research.

In the new study, Emilio Rolán-Alvarez and colleagues note that scientists long have known that animals of the same species can have different physical characteristics enabling them to survive in different habitats.

One famous example is the different beak sizes and shapes that evolved in Darwin's finches, enabling the birds to live on different foods in different habitats on the Galapagos Islands. Until now, however, scientists knew little about the invisible biochemical changes behind such adaptations.

To help fill those gaps, the scientists studied two populations of marine snails that live only a few feet apart on the Spanish coast. One group lives on the lower shore, typically submerged in water and protected from large changes in temperature. The other group lives on the upper shore exposed to daily changes in temperature, humidity and other environmental conditions. Tests with mass spectrometry showed major differences in about 12 percent of the proteins in the snail, a subset of proteins that apparently enables the snails to survive in different environmental conditions. — MTS

Article: "Proteomic Comparison between Two Marine Snail Ecotypes Reveals Details about the Biochemistry of Adaptation" dx.doi.org/10.1021/pr700863e

Source: ACS

Explore further: Research suggests marine invasive species benefit from rising CO2 levels

Related Stories

'Living fossil' genome decoded

September 18, 2015

A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST), Nagoya University, and the University of Tokyo decoded the first lingulid brachiopod genome, from Lingula anatina collected ...

Small sea snail damaging world's coral reefs

May 28, 2010

(PhysOrg.com) -- Victoria University research has found that a small sea snail may be causing significant damage to coral reefs in the Pacific, even more so than climate change or coral bleaching.

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.