Scientists use bubbles to future-proof fibre optics

November 25, 2008
Head of Electronic Engineering Professor Graham Town.

(PhysOrg.com) -- They're tiny, are rarely thought about by the people who use them, but are essential to how we access information, communicate with one another and live our everyday lives.

Optical fibres make it possible for us to use the technologies we take for granted such as the Internet and our mobile phones, and now new research from Macquarie University may hold the key to more cost-effective, energy-efficient, durable and easy-to-use fibre optics in the future.

A team of fibre optics specialists from the University's Department of Electronic Engineering has been developing a new prototype for fibre optics which is made from a "bubbly" polymer fibre.

Traditionally, glass has been used to produce optical fibres, but the equipment needed in order to process the glass at high temperatures makes this an expensive option.

While several groups around the world are investigating polymer as a potential future replacement, the Macquarie team is the only group to develop and test a system which uses bubbles within the polymer to guide and scatter light.

Head of Electronic Engineering Professor Graham Town said most researchers investigating microstructured polymer fibres were using stacked tubes or small holes drilled in a polymer preform, subsequently drawn down to micron-sized dimensions to guide light.

"Our technique involves heating the polymer to form bubbles - it's easier and cheaper than assembling tubes or drilling," Town said.

"This could be a cheap, clean and relatively fast way of developing an optical network - and the production process uses significantly less energy than if we were working with glass."

Deliberately leaky fibres are ideal for transmitting data over short distances. Another advantage of the bubbly polymer is that it allows light out and in, which makes it potentially very useful for sensing applications.

"This type of polymer optical fibre may prove useful for distributed sensing of materials such as toxic or explosive gases," Town said.

Provided by Macquarie University

Explore further: Homes storing CO2, just like trees

Related Stories

Homes storing CO2, just like trees

November 25, 2016

Houses built with bio-based materials, such as timber, straw and hemp, act as CO2 banks. Experts explain how citizens can become custodians of atmospheric carbon dioxide and thus help reduce air pollution

Sensing the stresses in advanced composite structures

November 24, 2016

Advanced composites such as glass fibre reinforced polymers (GFRPs) are light, stiff, strong, durable materials that can be flexibly shaped to build large load-bearing structures. New research using data logged from sensors ...

A urine test for Creutzfeldt-Jakob Disease may be possible

October 4, 2016

Researchers at the MRC Prion Unit at UCL have found that it may be possible to determine whether or not a person has sporadic Creutzfeldt-Jakob Disease (sCJD) by testing their urine for the presence of abnormal prion proteins.

Recommended for you

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Solar panels repay their energy 'debt': study

December 6, 2016

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

Wall-jumping robot is most vertically agile ever built

December 6, 2016

Roboticists at UC Berkeley have designed a small robot that can leap into the air and then spring off a wall, or perform multiple vertical jumps in a row, resulting in the highest robotic vertical jumping agility ever recorded. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.