Rheumatoid arthritis breakthrough

November 12, 2008

Rheumatoid arthritis is a painful, inflammatory type of arthritis that occurs when the body's immune system attacks itself. A new paper, published in this week's issue of PLoS Biology, reports a breakthrough in the understanding of how autoimmune responses can be controlled, offering a promising new strategy for therapy development for rheumatoid arthritis.

Normally, immune cells develop to recognise foreign material – antigens; including bacteria - so that they can activate a response against them. Immune cells that would respond to 'self' and therefore attack the body's own cells are usually destroyed during development. If any persist, they are held in check by special regulatory cells that provide a sort of autoimmune checkpoint. A key player in these regulatory cells is a molecule called Foxp3. People who lack or have mutated versions of the Foxp3 gene lack or have dysfunctional immune regulation, which causes dramatic autoimmune disease.

Scientists at the Medical Research Council's Laboratory of Molecular Biology in Cambridge, and funded by the Arthritis Research Campaign, have genetically engineered a drug-inducible form of Foxp3. Using this, scientists can 'switch' developing immune cells into regulatory cells that are then capable of suppressing the immune response.

Dr. Alexander Betz, Group Leader at the MRC laboratory, explains: "We have generated a modified form of Foxp3 which can be introduced into immune cells using genetic engineering techniques and then activated by a simple injection. When administered to and activated in animal models of arthritis, the modified cells inhibit or even reverse the disease process."

Further work is now aimed at elucidating the detailed molecular mechanisms involved in Foxp3 function, and transferring the experimental approach to human cells.

"First, we will develop a human Foxp3 factor and then assess its function in human arthritis models," said Dr Betz. "To be viable as a therapeutic option, the regulatory cells must fulfill certain criteria; they must be tissue matched to the patient for compatibility; they must only block the targeted disease and not the whole body immune response; and they have to home correctly to their target tissue. Establishing these criteria will be the key focus of our research.

"If Foxp3 functions as a key developmental switch in human immune cells, there is potential for a new avenue of therapy development that could transform arthritis treatment is substantial," he added.

Citation: Andersen KG, Butcher T, Betz AG (2008) Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells. PLoS Biol 6(11): e276. doi:10.1371/journal.pbio.0060276

Source: Public Library of Science

Explore further: Asthma and other allergies tied to absence of specialized cells

Related Stories

Flick of a protein switches immune response

July 27, 2006

A single protein can turn on and off a key component of the immune system by changing partners in an elegant genomic dance, said researchers at the University of Southern California and Harvard Medical School.

Type 1 diabetes triggered by 'lazy' regulatory T-cells

January 14, 2008

A research team led by Dr. Ciriaco A. Piccirillo of McGill University’s Department of Microbiology and Immunology has discovered that in some individuals, the specialized immunoregulatory T-cells that regulate the body’s ...

Air pollution alters immune function, worsens asthma symptoms

October 5, 2010

Exposure to dirty air is linked to decreased function of a gene that appears to increase the severity of asthma in children, according to a joint study by researchers at Stanford University and the University of California, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.