Nontoxic nanoparticle can deliver and track drugs

November 18, 2008

A nontoxic nanoparticle developed by Penn State researchers is proving to be an all-around effective delivery system for both therapeutic drugs and the fluorescent dyes that can track their delivery.

In a recent online issue of Nano Letters, an interdisciplinary group of materials scientists, chemists, bioengineers, physicists, and pharmacologists show that calcium phosphate particles ranging in size from 20 to 50 nanometers will successfully enter cells and dissolve harmlessly, releasing their cargo of drugs or dye.

Peter Butler, associate professor of bioengineering, and his students used high-speed lasers to measure the size of fluorescent dye-containing particles from their diffusion in solution.

"We use a technique called time correlated single photon counting," Butler says. "This uses pulses of laser light to read the time, on the order of nanoseconds, that molecules fluoresce."

With this method, his group was able to measure the size of the particles and their dispersion in solution, in this case a phosphate-buffered saline that is used as a simple model for blood.

"What we did in this study was to change the original neutral pH of the solution, which is similar to blood, to a more acidic environment, such as around solid tumors and in the parts of the cell that collect the nanoparticles-containing fluid immediately outside the cell membrane and bring it into the cell. When we lower the pH, the acidic environment dissolves the calcium phosphate particle," he adds.

"We can see that the size of the particles gets very small, essentially down to the size of the free dye that was inside the particles. That gives us evidence that this pH change can be used as a mechanism to release any drug that is encapsulated in the particle," Butler explains.

Although the primary use envisioned for these particles is for targeted cancer therapy, Butler's group is interested in their ability to deliver various drugs that have been shown to inhibit cell growth associated with vascular disease.

Several drugs have been shown in cultures to be promising for reducing hardening of the arteries and narrowing of blood vessels after balloon angioplasty. The problem has been in delivering any of these drugs to a target, Butler says.

Ceramide, a chemotherapeutic molecule that initiates cell death in cancer cells, has the ability to slow growth in healthy cells.

Mark Kester, professor of pharmacology, and Jong Yun, associate professor of pharmacology, both at Penn State College of Medicine, have optimized ceramide for both cancer and vascular disease.

Their groups found that by using human vascular smooth muscle cells in vitro, ceramide encapsulated in calcium phosphate nanoparticles reduced growth of muscle cells by up to 80 percent at a dose 25 times lower than ceramide administered freely, without damaging the cells.

The calcium phosphate nanoparticles were developed by James Adair, professor of materials science and engineering, and his students. The nanoparticles have several benefits other drug delivery systems do not, according to lead author Thomas Morgan, graduate student in chemistry.

Unlike quantum dots, which are composed of toxic metals, calcium phosphate is a safe, naturally occurring mineral that already is present in substantial amounts in the bloodstream.

"What distinguishes our method are smaller particles (for uptake into cells), no agglomeration (particles are dispersed evenly in solution), and that we put drugs or dyes inside the particle where they are protected, rather than on the surface," says Morgan. "For reasons we don't yet understand, fluorescent dyes encapsulated within our nanoparticles are four times brighter than free dyes.

"Drugs and dyes are expensive," he continues, "but an advantage of encapsulation is that you need much less of them. We can make high concentrations in the lab, and dilute them way down and still be effective. We even believe we can combine drug and dye delivery for simultaneous tracking and treatment. That's one of the things we are currently working on."

Source: Penn State

Explore further: Researchers resurrect ancient viruses in hopes of improving gene therapy

Related Stories

Scientists bolster 'phage' weapons in food safety battle

July 22, 2015

In the war to keep food safe from bacteria, Cornell food scientists examine a class of weaponry called bacteriophages – an all-natural biological enemy for the nasty Listeria monocytogenes, which threatens meat, produce, ...

Rare form: Novel structures built from DNA emerge

July 20, 2015

DNA, the molecular foundation of life, has new tricks up its sleeve. The four bases from which it is composed snap together like jigsaw pieces and can be artificially manipulated to construct endlessly varied forms in two ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.