Nanoparticles trigger cell death?

November 13, 2008

Nanoparticles that are one milliard of a metre in size are widely used, for example, in cosmetics and food packaging materials. There are also significant amounts of nanoparticles in exhaust emissions. However, very little is yet known of their health effects, because only a very small portion of research into nanoparticles is focused on their health and safety risks. Nanoparticles have even been dubbed the asbestos of the 2000s bys some researchers, and therefore a considerable threat to people's health. While the use of nanoparticles in consumer products increases, their follow-up procedures and legislation are lagging behind. The European Union chemicals directive REACH does not even touch upon nanomaterials.

The research teams of Professor Ilpo Vattulainen (Department of Physics, Tampere University of Technology, Finland) and academy researcher Emppu Salonen (Department of Applied Physics, Helsinki University of Technology, Finland) have together with Professor Pu-Chun Ke's (Clemson University, SC, USA) team researched how carbon-based nanoparticles interact with cells. The results provided strong biophysical evidence that nanoparticles may alter cell structure and pose health risks.

It emerged from the research that certain cell cultures are not affected when exposed to fullerenes, i.e. nano-sized molecules that consist of spherical, ellipsoid, or cylindrical arrangement of carbon atoms. Cells are also not affected when exposed to gallic acid, an organic acid that is found in almost all plants and, for instance, in tea. However, when fullerenes and gallic acid are present in the cell culture at the same time, they interact to form structures that bind to the cell surface and cause cell death.

The research demonstrates how difficult it is to map out the health effects of nanoparticles. Even if a certain nanoparticle does not appear toxic, the interaction between this nanoparticle and other compounds in the human body may cause serious problems to cell functions. Since the number of possible combinations of nanoparticles and various biomolecules is immense, it is practically impossible to research them systematically.

The research on cell death caused by fullerenes and gallic acid was recently published in the nanoscience journal Small [E. Salonen, S. Lin, M. L. Reid, M. Allegood, X. Wang, A. M. Rao, I. Vattulainen, P.-C. Ke. Real-time translocation of fullerene reveals cell contraction. Small 4, 1986-1992 (2008)].

Source: Tampere University of Technology

Explore further: Nanomaterials and UV light can "trap" chemicals for easy removal from soil and water

Related Stories

Tiny wires could provide a big energy boost

July 7, 2015

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

albert
1 / 5 (1) Nov 13, 2008
Yes. Just keep adding nano to everything, you idiots. Let's kill the species called "human" and leave here for good. Every living thing must die anyway. Nano will make sure that ours is an invisible death.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.