Multiple sclerosis research charges ahead with new mouse model of disease

November 6, 2008

A new study highlights the role of a charge-switching enzyme in nervous system deficits characteristic of multiple sclerosis and other related neurological illness.

Multiple sclerosis (MS) is one of several diseases in which myelin – the insulator for electrical signaling in the nervous system – breaks down and causes severe deficits in brain and nerve function. Much like the rubber insulation on an electrical cord, myelin surrounds long projections from the body of a neuron, and allows signals to travel down the cell with speed and efficiency. Patients with MS and other "de-myelinating" diseases therefore suffer deficits in balance, coordination, and movement, as well as sensory disturbances, from the loss of this neuronal insulation.

A major research initiative in treating these diseases is identifying the molecular factors and changes that lead to myelin breakdown. In a new study published in Disease Models & Mechanisms (DMM),, a team of Canadian researchers report on a new mouse model of disease which will help in understanding how demyelination occurs. Previous research had identified that an enzyme known as peptidylarginine deiminase 2, or PAD2, is increased in patients with MS, and that PAD2 switches a charge on a protein key to myelin stability. Therefore, Abdiwahab A. Musse and colleagues at the University of Guelph and the Hospital for Sick Children in Ontario created a genetically modified mouse expressing too much of an enzyme known as PAD2. They found that these mice had significant loss of myelin, and also have behavioral deficits, such as abnormal movement, balance, and coordination.

Not only does this work present a new mouse model to study demyleinating disease, but it also stresses the importance of PAD in maintaining myelin integrity. Their work highlights PAD as a potential therapeutic target, as well as a potential marker for early detection of MS and other diseases characterized by a loss of myelin.

Source: The Company of Biologists

Explore further: Novel mouse model of demyelinating disorder

Related Stories

Novel mouse model of demyelinating disorder

January 14, 2010

In the February 1st issue of G&D, Dr. Brian Popko (The University of Chicago) and colleagues describe how mutation of a gene called ZFP191 leads to disordered CNS myelination in mice -- reminiscent of what is seen in human ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.