New material could make gases more transportable

November 20, 2008

Chemists at the University of Liverpool have developed a way of converting methane gas into a powder form in order to make it more transportable.

Scientists have developed a material made out of a mixture of silica and water which can soak up large quantities of methane molecules. The material looks and acts like a fine white powder which, if developed for industrial use, might be easily transported or used as a vehicle fuel.

Methane is the principal component of natural gas and can be burnt in oxygen to produce carbon dioxide and water. The abundance of the gas and its relatively clean burning process makes it a good source of fuel, but due to its gaseous state at room temperature, methane is difficult to transport from its source.

Professor Andy Cooper, Director of the Centre for Materials Discovery at the University's Department of Chemistry, explains: "Many natural gas reserves are geographically remote and can only be extracted via pipelines, so there is a need to look for other ways to transport the gas. It has been suggested that methane gas hydrate could be used as a way of containing methane gas for transportation. The disadvantage of methane gas hydrate for industry use is that it is formed at a very slow rate when methane reacts with water under pressure.

"To counteract these difficulties we used a method to break water up into tiny droplets to increase the surface area in contact with the gas. We did this by mixing water with a special form of silica – a similar material to sand – which stops the water droplets from coalescing. This 'dry water' powder soaks up large quantities of methane quite rapidly at around water's normal freezing point."

The team also found that 'dry water' could be more economical than other potential products because it is made from cheap raw materials. The material may also have industrial applications if methane could be stored more conveniently and used to power clean vehicles.

Chemists at Liverpool are now investigating ways to store larger quantities of methane gas at higher temperatures and lower pressures as part of a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC).

Source: University of Liverpool

Explore further: Contamination, planetary protection and the search for life on Mars

Related Stories

Methane observatories successfully deployed in the Arctic

September 22, 2015

It is not only the space agencies that launch landers with sensors to far away places . Marine science institutions have a lot of unknown ground to cover in their quest for knowledge. Also they are depending on groundbreaking ...

How much energy does NYC waste?

September 29, 2015

New York is the most wasteful megacity in the world according to a 2015 report on the per capita energy consumption of 27 global megacities.

The moons of Saturn

September 14, 2015

Saturn is well known for being a gas giant, and for its impressive ring system. But would it surprise you to know that this planet also has the second-most moons in the Solar System, second only to Jupiter? Yes, Saturn has ...

The gas (and ice) giant Neptune

September 14, 2015

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the "demotion" of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and ...

Recommended for you

Team extends the lifetime of atoms using a mirror

October 13, 2015

Researchers at Chalmers University of Technology have succeeded in an experiment where they get an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently ...

A particle purely made of nuclear force

October 13, 2015

Scientists at TU Wien (Vienna) have calculated that the meson f0(1710) could be a very special particle – the long-sought-after glueball, a particle composed of pure force.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.