How is our left brain is different from our right?

November 17, 2008

Since the historical discovery of the speech center in the left cortex in 150 years ago, functional differences between left and right hemisphere have been well known; language is mainly handled by left hemisphere, while spatial recognition is more specialized to the right hemisphere. However, the structural differences of synapses underlying left-right difference of the brain remained unknown.

Japanese research team, led by Prof Ryuichi Shigemoto in National Institute for Physiological Sciences, Dr Yoshiaki Shinohara and his colleagues found that synaptic size and shape in the center of the spatial memory (i.e. hippocampus) were asymmetrical between synapses receiving input from the left and right hemisphere. Hajime Hirase in Brain Science Institute in RIKEN helped this study, and it was done under Japan Science Technorogy Agency support.

This report is published in Proceedings of National Academy of Sciences in the week of Nov 17, 2008.

They investigated the electron microscopic structure of synapses in left and right hippocampus, and found synapses made by terminals from the right hippocampus are large, complex in shape, and rich in the GluR1 subunit of AMPA-type glutamate receptors. In contrast, synapses receiving input from the left hippocampus are small and rich in the NR2B subunit of NMDA receptors. That means, both synaptic structure and synaptic molecules differ between synapses with left and right inputs.

"Long-term potentiaon (LTP), that is known as the cellular mechanism of learning and memory, depends on the allocation of glutamate receptors in hippocampus. According to our present finding, synapses receiving right input may be more suitable to initiate LTP. This finding may help understand how our left and right brains work differently", said Prof Shigemoto.

Source: National Institute for Physiological Sciences

Explore further: Made to order at the synapse: Dynamics of protein synthesis at neuron tip

Related Stories

Regions of the brain can rewire themselves

March 9, 2009

( -- Scientists at the Max Planck Institute for Biological Cybernetics in Tübingen have succeeded in demonstrating for the first time that the activities of large parts of the brain can be altered in the long ...

Discovering the source of long-term motor memory

November 15, 2010

The motor memory we use everyday-for sport, playing a musical instrument and even typing-is acquired through repeated practice and stored in the brain. New motor skills can be learned through practice, but often those skills ...

The building blocks of memory

August 20, 2007

Learning new things, remembering past experiences and adapting to a changing environment - these abilities carried out by the brain are essential for day-to-day survival. This unique flexibility is in part accomplished through ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 18, 2008
Can this information be used to treat dyslexia and other language disorders. Probably agents that enhance receptor growth, or stimulation of genes for these receptors. Do Racetams help in some language disorders?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.