How is our left brain is different from our right?

November 17, 2008

Since the historical discovery of the speech center in the left cortex in 150 years ago, functional differences between left and right hemisphere have been well known; language is mainly handled by left hemisphere, while spatial recognition is more specialized to the right hemisphere. However, the structural differences of synapses underlying left-right difference of the brain remained unknown.

Japanese research team, led by Prof Ryuichi Shigemoto in National Institute for Physiological Sciences, Dr Yoshiaki Shinohara and his colleagues found that synaptic size and shape in the center of the spatial memory (i.e. hippocampus) were asymmetrical between synapses receiving input from the left and right hemisphere. Hajime Hirase in Brain Science Institute in RIKEN helped this study, and it was done under Japan Science Technorogy Agency support.

This report is published in Proceedings of National Academy of Sciences in the week of Nov 17, 2008.

They investigated the electron microscopic structure of synapses in left and right hippocampus, and found synapses made by terminals from the right hippocampus are large, complex in shape, and rich in the GluR1 subunit of AMPA-type glutamate receptors. In contrast, synapses receiving input from the left hippocampus are small and rich in the NR2B subunit of NMDA receptors. That means, both synaptic structure and synaptic molecules differ between synapses with left and right inputs.

"Long-term potentiaon (LTP), that is known as the cellular mechanism of learning and memory, depends on the allocation of glutamate receptors in hippocampus. According to our present finding, synapses receiving right input may be more suitable to initiate LTP. This finding may help understand how our left and right brains work differently", said Prof Shigemoto.

Source: National Institute for Physiological Sciences

Explore further: The origins of polarized nervous systems

Related Stories

The origins of polarized nervous systems

March 3, 2015

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves of calcium flooding ...

Secretions of the mind

February 25, 2011

A molecule called calcium-dependent activator protein for secretion 2 (CAPS2) promotes the secretion of a neurotrophic factor that is critical for the proper development and survival of networks of interneurons in the brain’s ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

drombewa
not rated yet Nov 18, 2008
Can this information be used to treat dyslexia and other language disorders. Probably agents that enhance receptor growth, or stimulation of genes for these receptors. Do Racetams help in some language disorders?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.