Kidney function discovery sheds light on genetic complexity of disease

November 26, 2008

To find a cure for cancer, haemophilia and other diseases, researchers need to be looking for complex, interacting genetic factors, according to the authors of a new study.

A new study, published in the Journal of Clinical Investigation by researchers at the Centenary Institute, Royal Prince Alfred Hospital (RPA) and The Australian National University (ANU), has exposed a greater level of genetic complexity for diseases than was originally thought.

The researchers looked at two disorders of kidney function - iminoglycinuria and hyperglycinuria. These disorders, first described 50 years ago, are conditions where large amounts of individual amino acids (the building blocks of proteins in our body) are wasted by the kidney.

Professor John Rasko, Head, Gene and Stem Cell Therapy program at Centenary Institute and Cell and Molecular Therapies at RPA, says although up to one in every thousand babies has this disorder at birth, it usually resolves in the first year of life. For those individuals in whom it continues to occur, it is generally thought not to cause medical problems but previous cases have been linked to high blood pressure, kidney stones, deafness and problems in the brain.

"Iminoglycinuria was observed to occur in families and the pattern of inheritance suggested that the cause might be due to an inherited abnormality of a specific pump on the surface of kidney cells," Professor Rasko explains.

The teams from Centenary Institute, RPA and ANU have now unravelled the genetic explanation by showing that not one, but up to four different pumps present in the kidney determine whether or not this particular abnormality occurs.

"The study demonstrates that in some cases mutations occur only in one gene, while in other cases mutations in two or even three different genes are observed, and that the disorders can arise due to mutations in a group of genes carrying out related functions," says Professor Stefan Broer, School of Biochemistry and Molecular Biology at ANU.

"From the point of view of understanding complex diseases in humans, it suggests we need to integrate much greater levels of complex genetic information to reach a clear understanding."

Professor Rasko says that these findings provide a foundation to improve our understanding of common human diseases, and greater potential to develop effective gene therapies to reduce the impact of diseases on patients.

"Gene therapies, whereby cells can be modified and then re-introduced into the body without the genetic mutations that cause illness, provide enormous potential to help cure diseases including haemophilia, cancer and cardiovascular disease," Professor Rasko explains.

"A crucial ingredient of successfully developing gene therapies is a thorough understanding of all the genetic factors at play in disease. This discovery takes us one step closer to understanding the complex factors at work in these serious diseases."

Source: Research Australia

Explore further: Sensitivity of smell cilia depends on location and length in nasal cavity

Related Stories

The science and fiction behind Blade Runner

August 31, 2015

Science – or strange permutations of it at least – is everywhere in the cinema. At any one time on movie screens around the world, humans are being threatened by lethal viruses, cured from terminal illness by miracle ...

A model for ageing

August 7, 2015

Life is short, especially for the killifish, Nothobranchius furzeri: It lives for only a few months and then its time is up. During that short lifespan it passes through every phase of life from larva to venerable old fish. ...

Important regulation of cell invaginations discovered

August 6, 2015

Lack of microinvaginations in the cell membrane, caveolae, can cause serious diseases such as lipodystrophy and muscular dystrophy. Researchers at Lund University in Sweden have now discovered a "main switch" that regulates ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.