Computers make sense of experiments on human disease

November 12, 2008

Increased use of computers to create predictive models of human disease is likely following a workshop organised by the European Science Foundation (ESF), which urged for a collaborative effort between specialists in the field. Human disease research produces an enormous amount of data from different sources such as animal models, high throughput genetic screening of human tissue, and in vitro laboratory experiments. This data operates at different levels and scales including genes, molecules, cells, tissues and whole organs, embodying a huge amount of potentially valuable insight that current computer modelling approaches often fail to exploit properly.

However, significant advances in the modelling of a few specific diseases, such as multiple sclerosis (MS), have been made. A major aim of the ESF workshop was thus to generalise such work and create a more coherent body of expertise across the whole field of computational disease analysis, according to Albert Compte, co-convenor of the ESF workshop, from the Computational and physiological bases of cortical networks laboratory at the Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS) in Barcelona. "A workshop like this one was useful in seeing how advances in other research fields can be used more generally for disease modelling," said Compte. "So far, novel modelling approaches have been confined to a specific disease or a particular level of description".

A model might be confined just to the molecular level or the cellular level for example. The ESF workshop highlighted the benefits that could be obtained from integrating data from different levels. This can provide more detailed and flexible models, with greater power to identify causes of diseases and predict possible cures in future.

However, one potential problem when building sophisticated disease models operating at different levels is that they can become too complex, with a lack of sufficient data for any useful analysis. This can be resolved by selecting a simpler model that corresponds only to the experimental data that actually exists. Delegates at the workshop heard how in the case of MS, selection of the model could be tuned to the data, to make best use of the actual experimental results obtained in a particular study, as explained by Jesper Tegner, another co-convenor of the ESF workshop, from the Atherosclerosis Research Unit at the Karolinska Institute Centre for Molecular Medicine (CMM) in Stockholm, Sweden.

"There was one exciting presentation on MS," said Tegner. "The immune system is clearly central for MS. However, the trick in the case of MS is to represent different aspects of the immune system according to the available data.The objective isn't to model the whole immune system. One interesting level of abstraction was the presentation of agent-based modelling of MS where individual cells operated as agents, thus omitting the intracellular machinery." In other words, the detailed interior workings of the cells could be ignored in this case because that would have made the model overcomplicated, with insufficient data at the different levels to produce any useful insights.

In other experiments, data about varying levels of gene expression was obtained, which required very different models with networks of graphs. These highlighted the patterns of gene expression associated with a particular disease, such as MS.

Yet another valuable application of computer-based mathematical disease models lies in studying the phenomenon of addiction to drugs such as nicotine and helping to reconcile conflicting theories, as Compte pointed out. "The neurobiology of nicotine addiction is a hotly debated field. In particular, there are two contending views on how neurons and their connections in subcortical nuclei are affected by nicotine. This computer model allows us to reconcile the apparently contradictory results obtained from in vitro and in vivo experiments, and thus provides a single theoretical proposal of how nicotine affects neuronal circuits in the brain and causes addiction, compatible with most available experimental results."

Tegner and others at the workshop were confident that a coherent framework for building multi-level mathematical models on the basis of available data will lead to better understanding of many diseases and conditions such as drug addiction. This in turn, could lead to better therapies.

Source: European Science Foundation

Explore further: A cure for vitamin B6 deficiency

Related Stories

A cure for vitamin B6 deficiency

October 9, 2015

In many tropical countries, particularly in sub-Saharan Africa, cassava is one of the most important staple foods. People eat the starchy storage roots but also the leaves as a vegetable. Both have to be cooked first to remove ...

New consortium to create 'virtual cell'

September 17, 2015

Drawing on complementary strengths of two San Diego institutions, The Scripps Research Institute (TSRI) and the University of California, San Diego (UC San Diego) have formed a new consortium with a big mission: to map cells ...

Ants as a model of complex societies

August 5, 2015

In small plastic tubs lining the shelves of a basement laboratory at the University of Pennsylvania, a million organisms live in complex societies.

Rethinking the computer game as a teaching tool

August 23, 2015

Christian Varona didn't rely on textbooks and slideshows to learn history. When it came to studying for daunting Advanced Placement tests, he didn't turn to a tutor, either.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 12, 2008
I hope the ELECTRONIC signatures are taken into account. It's a neglected ingredient in most studies, but I believe there are profound effects!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.