Trapping Greenhouse Gases (Without Leaks)

Nov 19, 2008

Of all the possible ways of reducing future greenhouse gas emissions, one of the most immediately feasible is carbon dioxide "sequestration," which involves compressing the gas into a liquid and piping it deep underground instead of releasing it into the atmosphere. The Earth has abundant geological formations known as saline aquifers that would seem to be ideal storage bins for such sequestered carbon.

However, says Jerome Neufeld of the University of Cambridge in England, if carbon sequestration is to play a major role in reducing greenhouse gas emissions, the process needs to be deployed on a global scale, and new tools will be needed to monitor the long-term stability and fate of trapped gas.

The principle of sequestration is simple. Saline aquifers are basically porous regions of rock soaked with brackish fluids. The density of carbon dioxide is much less than that of the brine, so gas pumped into the aquifer will rise through the porous rock until it hits an impermeable "cap" rock. Over very long time scales, trapped carbon dioxide will saturate the brine and become mineralized. But what happens in the short term? If you pump carbon dioxide into saline aquifers, will it stay put and mineralize or leak away completely?

Neufeld and his colleagues have created a simple tool to predict the fate of carbon dioxide "plumes" rising though aquifers after being pumped underground. Their model shows how the shape of rising plumes is influenced by the structure of the surrounding rock, and it suggests that there are advantages to injecting carbon dioxide into reservoirs that are like geological layer cakes, with alternating stacks of porous and seal rock. When a plume reaches an impermeable boundary, it spreads until it can rise again, filling out a shape that looks like an inverted Christmas tree. As the plume pools it mixes with the brine, ultimately resulting in a more stable long-term sequestration.

Neufeld's talk, "Plume dynamics in heterogeneous porous media" will be held on Tuesday, November 25, 2008, at the 61st Annual Meeting of the American Physical Society.

Provided by American Institute of Physics

Explore further: Researchers prove magnetism can control heat, sound

Related Stories

Rules aim to protect imperiled bird's habitat in 10 states

46 minutes ago

Interior Secretary Sally Jewell revealed plans Thursday to preserve habitat in 10 Western states for an imperiled ground-dwelling bird, the federal government's biggest land-planning effort to date for conservation of a single ...

Recommended for you

How researchers listen for gravitational waves

10 hours ago

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

22 hours ago

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

On-demand X-rays at synchrotron light sources

May 26, 2015

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.