Study identifies genetic variants giving rise to differences in metabolism

November 28, 2008

Common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population, according to a paper published November 28 in the open-access journal PLoS Genetics. An international team of researchers, led by Karsten Suhre, has conducted a genome-wide association study with metabolomics, identifying genetic variants in genes involved in the breakdown of fats. The resulting differences in metabolic capacity can affect individuals' susceptibility to complex diseases such as diabetes and hyperactivity.

In the rapidly evolving field of metabolomics, scientists aim to measure all endogenous metabolites in a cell or body fluid. These measurements provide a functional readout of the physiological state of the human body. Investigation into these so-called "genetically determined metabotypes" in their biochemical context may help determine the pathogenesis of common diseases and gene-environment interactions.

The team identified four single nucleotide polymorphisms (SNPs) located in genes coding for well-characterized enzymes of the lipid metabolism. Individuals with different genotypes in these genes have significantly different metabolic capacities with respect to the synthesis of some polyunsaturated fatty acids, the beta-oxidation of short- and medium-chain fatty acids and the breakdown of triglycerides. By simultaneous measurements of both SNPs and serum concentrations of endogenous metabolites, the researchers determined the metabolome of several hundred healthy individuals and compared it to their genetic inheritance.

The results suggest that most individuals carry one or more risk alleles in their genetic inheritance that may determine a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge. These findings may lead to more targeted approaches to health care based on a combination of genotyping and metabolic characterization. To achieve this goal, it will be necessary to identify the major genetically determined metabotypes and their association to complex diseases.

Citation: Gieger C, Geistlinger L, Altmaier E, Hrabe´ de Angelis M, Kronenberg F, et al. (2008) Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum. PLoS Genet 4(11): e1000282. doi:10.1371/journal.pgen.1000282

Source: Public Library of Science

Explore further: The life and times of domesticated cheese-making fungi

Related Stories

The life and times of domesticated cheese-making fungi

September 24, 2015

People sure love their cheeses, but scientists have a lot to learn about the fungi responsible for a blue cheese like Roquefort or a soft Camembert. Now researchers reporting in the Cell Press journal Current Biology on September ...

Scientists create rice variety with high folate stability

September 22, 2015

Researchers from Ghent University succeeded in stabilizing folates in biofortified rice in order to prevent their degradation upon long term storage. They used two strategies: by linking folates with folate binding proteins ...

Dually noted: New CRISPR-Cas9 strategy edits genes two ways

September 7, 2015

The CRISPR-Cas9 system has been in the limelight mainly as a revolutionary genome engineering tool used to modify specific gene sequences within the vast sea of an organism's DNA. Cas9, a naturally occurring protein in the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.