Early Virus Detection in Cells Made Possible by New Research

November 25, 2008

The benefits of real-time virus tracking, made possible through research from UCR’s Bourns College of Engineering and the College of Natural and Agricultural Sciences (CNAS) include faster detection and better understanding of antiviral treatments. Work at Bourns and CNAS to provide a significant tool for the rapid detection of viral infection was reported in the Proceedings of the National Academy of Sciences Nov. 11, 2008, edition.

In addition to quick infection detection, the work also has important implications for conducting therapeutic studies of antiviral treatments. Current techniques to detect viruses can take days or weeks.

“If you can detect them earlier and implement prevention procedures, you can delay the infection process,” said Wilfred Chen, professor of chemical and environmental engineering, Bourns College of Engineering, who with student Hsaio-Yun Yeh, Ashok Mulchandani, professor of chemical engineering, and Marylynn Yates, professor of environmental sciences, CNAS, completed the study. The paper is entitled "Visualizing the dynamics of viral replication in living cells via TAT-peptide delivery of nuclease-resistant molecular beacons.”

The UCR team’s study describes using a probe to enter cells, which fluoresces when it detects the viral nucleic acid. Researchers are then able to observe in real time the virus’s reproductive cycle and its spread from cell to cell.

“Our goal was to develop a method to follow virus replication in living cells,” Chen said. “It’s a generalized concept.”

Chen said that while some viruses can replicate quickly, enabling detection within a few days, others can take more than a week to detect using traditional methods.

“We have been working on this for two years and recently had the study published,” said Chen. “Some of the pieces have been demonstrated in the past, but this is the first time we have used all of the pieces together.”

The study determined that this new method of virus tracking would be extremely useful in environmental monitoring and perhaps counterterrorism detection.

Provided by University of California, Riverside

Explore further: New sensor provides first real-time, eagle-eye view of neural activity in mammalian brains

Related Stories

Researchers propose rapid Ebola test using nanotechnology

November 13, 2015

Just as Ebola was finally fading from the headlines, it came back in the news with shocking reports: a Scottish nurse rehospitalized nine months after beating Ebola is now suffering from meningitis caused by the virus. A ...

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

Drones for social good

November 18, 2015

Flying robot technology is helping researchers find new ways to deliver medical aid to remote areas, monitor the environment and more.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.