Bound by attention: Bringing rats and humans together

November 18, 2008

When picking through a basket of fruit, it doesn't seem very difficult to recognize a green pear from a green apple. This is easy, thanks to "feature binding"— a process by which our brain combines all of the specific features of an object and gives us a complete and unified picture of it.

For example, upon first seeing the fruit basket, our brain immediately gets to work, connecting (or binding) information about each fruit's shape to its color to ensure that we select the green apple we are craving instead of a green pear. However, if our brain gets distracted, our ability for feature binding is reduced and we may inadvertently end up biting into the green pear instead. It was well known which areas of the brain are involved in feature binding, but it was unclear which neurotransmitters (or brain chemicals) contribute to this important process.

Psychologists Leigh C.P. Botly and Eve De Rosa from the University of Toronto wanted to investigate if acetylcholine is involved in feature binding. Acetylcholine is a neurotransmitter that is important for attention and seemed like a good candidate for playing a role in feature binding as well. A group of volunteers participated in a feature binding task (choosing among various shapes and colors), with some of them being distracted throughout the duration of the task. The psychologists also developed a feature binding task for rats (having them choose among variously scented food bowls) and treated some of the animals with the drug scopolamine, which temporarily blocks the effects of acetylcholine.

The results, reported in the November issue of Psychological Science, a journal of the Association for Psychological Science, showed that patterns of behavior were very similar in distracted humans and rats on scopolamine. Both the drug treated rats and distracted humans had a decreased ability to complete the feature binding task (which required the ability to combine many different features of an object together) although their ability to process just single features of an object (e.g. one specific color or odor) was not affected. In other words, blocking the rats' cholinergic system (by using scopolamine) made them behave similarly to distracted humans, suggesting that the neurotransmitter acetylcholine is necessary for feature binding to occur. The authors note that "acetylcholine may provide the attentional 'glue' for feature binding."

Their findings have important clinical implications, as the development of a better animal model of distraction and inattention may lead to improved therapies and treatments for a variety of disorders, such as Alzheimer's disease.

Source: Association for Psychological Science

Explore further: Study leads to 3-D structures of key molecule implicated in diseases of the brain

Related Stories

A controversial theory of olfaction deemed implausible

June 5, 2015

Humans can discriminate tens of thousands of odors. While we may take our sense of smell for granted, it adds immeasurably to our quality of life: the aroma of freshly brewed coffee; the invigorating smell of an ocean breeze ...

Quantum Criticality in life's proteins (Update)

April 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The idea of a quantum criticality, ...

Bats bolster brain hypothesis, maybe technology, too

August 15, 2014

Amid a neuroscience debate about how people and animals focus on distinct objects within cluttered scenes, some of the newest and best evidence comes from the way bats "see" with their ears, according to a new paper in the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.