Biologists identify genes that prevent changes in physical traits due to environmental changes

November 4, 2008

New York University biologists have identified genes that prevent physical traits from being affected by environmental changes. The research, which studied the genetic makeup of baker's yeast, appears in the latest issue of the Public Library of Science's journal, PloS Biology.

NYU biologists Mark Siegal, an assistant professor, and Sasha Levy, a post-doctoral fellow, who are part of NYU's Center for Genomics and Systems Biology, conducted the study.

The researchers sought to understand how organisms develop and function reliably, despite experiencing a range of environmental conditions and genetic differences caused by mutations.

"Most species maintain abundant genetic variation and experience a wide range of environmental conditions, yet phenotypic—or physical—differences between individuals are usually small," Siegal explained. "This phenomenon, known as phenotypic robustness, presents an apparent contradiction: if biological systems are so resistant to variation, how do they diverge and adapt through evolutionary time?"

To identify genes that buffer environmental and genetic variation, which may influence how novel traits evolve, the researchers examined Saccharomyces cerevisiae, a species of budding yeast. They investigated the molecular mechanisms that underlie its phenotypic robustness and how these mechanisms can be broken to produce differences in physical appearance within the species.

Siegal and Levy sought to identify genes that contribute to phenotypic robustness in yeast by analyzing the differences in their phenotypes in a comprehensive collection of single-gene knockout strains—that is, they removed these genes to determine if the resulting phenotypes were more variable from cell to cell.

They determined that approximately 5 percent of yeast genes, or approximately 300 genes, break phenotypic robustness when knocked out. These genes tend to interact genetically with a large number of other genes, and their products tend to interact physically with a large number of other gene products. When they are absent, the cellular networks built from their interactions are disrupted and physical differences in the species result. In nature, the researchers hypothesized, some individuals might then have physical features that yield an advantage over the others.

"If so, the loss of phenotypic robustness could actually serve an adaptive role during evolution," Siegal explained.

Source: New York University

Explore further: Tiny fish provides giant insight into how organisms adapt to changing environment

Related Stories

Planting a new perspective on climate research

August 2, 2013

(Phys.org) —A study on the mechanisms of how plants respond and adapt to elevated levels of carbon dioxide (CO2) and higher temperatures has opened a new perspective in climate research. Lead researcher Qiong A. Liu (Alison) ...

Speeding up evolution: Orchid epigenetics

July 28, 2011

Organisms adapt to their dynamic environment using various strategies. Ovidiu Paun, working at the Department of Systematic and Evolutionary Botany, investigates how marsh orchids adjust to and diffuse in different habitats. ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.