Beta Pictoris planet finally imaged?

Nov 21, 2008
This composite image represents the close environment of Beta Pictoris as seen in near infrared light. This very faint environment is revealed after a very careful subtraction of the much brighter stellar halo. The outer part of the image shows the reflected light on the dust disc, as observed in 1996 with the ADONIS instrument on ESO's 3.6 m telescope; the inner part is the innermost part of the system, as seen at 3.6 microns with NACO on the Very Large Telescope. The newly detected source is more than 1000 times fainter than Beta Pictoris, aligned with the disc, at a projected distance of 8 times the Earth-Sun distance. Both parts of the image were obtained on ESO telescopes equipped with adaptive optics. Credit: ESO/A.-M. Lagrange et al.

(PhysOrg.com) -- The hot star Beta Pictoris is one of the best-known examples of stars surrounded by a dusty 'debris' disc. Debris discs are composed of dust resulting from collisions among larger bodies like planetary embryos or asteroids. They are a bigger version of the zodiacal dust in our Solar System. Its disc was the first to be imaged โ€” as early as 1984 โ€” and remains the best-studied system. Earlier observations showed a warp of the disc, a secondary inclined disc and infalling comets onto the star. "These are indirect, but tell-tale signs that strongly suggest the presence of a massive planet lying between 5 and 10 times the mean Earth-Sun distance from its host star," says team leader Anne-Marie Lagrange. "However, probing the very inner region of the disc, so close to the glowing star, is a most challenging task."

In 2003, the French team used the NAOS-CONICA instrument (or NACO), mounted on one of the 8.2 m Unit Telescopes of ESO's Very Large Telescope (VLT), to benefit from both the high image quality provided by the Adaptive Optics system at infrared wavelengths and the good dynamics offered by the detector, in order to study the immediate surroundings of Beta Pictoris.

Recently, a member of the team re-analysed the data in a different way to seek the trace of a companion to the star. Infrared wavelengths are indeed very well suited for such searches. "For this, the real challenge is to identify and subtract as accurately as possible the bright stellar halo," explains Lagrange. "We were able to achieve this after a precise and drastic selection of the best images recorded during our observations."

The strategy proved very rewarding, as the astronomers were able to discern a feeble, point-like glow well inside the star's halo. To eliminate the possibility that this was an artefact and not a real object, a battery of tests was conducted and several members of the team, using three different methods, did the analysis independently, always with the same success. Moreover, the companion was also discovered in other data sets, further strengthening the team's conclusion: the companion is real.

"Our observations point to the presence of a giant planet, about 8 times as massive as Jupiter and with a projected distance from its star of about 8 times the Earth-Sun distance, which is about the distance of Saturn in our Solar System," says Lagrange.

"We cannot yet rule out definitively, however, that the candidate companion could be a foreground or background object," cautions co-worker Gael Chauvin. "To eliminate this very small possibility, we will need to make new observations that confirm the nature of the discovery."

The team also dug into the archives of the Hubble Space Telescope but couldn't see anything, "while most possible foreground or background objects would have been detected", remarks another team member, David Ehrenreich.

The fact that the candidate companion lies in the plane of the disc also strongly implies that it is bound to the star and its proto-planetary disc.

"Moreover, the candidate companion has exactly the mass and distance from its host star needed to explain all the disc's properties. This is clearly another nail in the coffin of the false alarm hypothesis," adds Lagrange.

When confirmed, this candidate companion will be the closest planet from its star ever imaged. In particular, it will be located well inside the orbits of the outer planets of the Solar System. Several other planetary candidates have indeed been imaged, but they are all located further away from their host star: if located in the Solar System, they would lie close or beyond the orbit of the farthest planet, Neptune. The formation processes of these distant planets are likely to be quite different from those in our Solar System and in Beta Pictoris.

"Direct imaging of extrasolar planets is necessary to test the various models of formation and evolution of planetary systems. But such observations are only beginning. Limited today to giant planets around young stars, they will in the future extend to the detection of cooler and older planets, with the forthcoming instruments on the VLT and on the next generation of optical telescopes," concludes team member Daniel Rouan.

Only 12 million years old, the 'baby star' Beta Pictoris is located about 70 light-years away towards the constellation Pictor (the Painter).

Citation: "A probable giant planet imaged in the รข Pictoris disk. VLT/NACO Deep L-band imaging", by A.-M. Lagrange et al., 2008, Letter to the Editor of Astronomy and Astrophysics, in press.

Provided by ESO

Explore further: What are extrasolar planets?

Related Stories

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Delta Cephei's hidden companion

May 12, 2015

To measure distances in the universe, astronomers use cepheids, a family of variable stars whose luminosity varies with time. Their role as distance calibrators has brought them attention from researchers ...

Pulsar with widest orbit ever detected

May 01, 2015

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT). ...

NuSTAR captures possible 'screams' from zombie stars

Apr 30, 2015

Peering into the heart of the Milky Way galaxy, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) has spotted a mysterious glow of high-energy X-rays that, according to scientists, could be the "howls" ...

Recommended for you

What are extrasolar planets?

20 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

A curious family of giant exoplanets

21 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

Astrobiology students explore alien environment on Earth

21 hours ago

Sonny Harman never thought he'd be able to travel far enough to do field work. That's because the Penn State doctoral student studies atmospheres on other planets. But to his surprise, Harman recently stepped ...

NASA image: Hubble revisits tangled NGC 6240

21 hours ago

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. Hubble previously released an image of this galaxy back in 2008, but the knotted region, shown ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
1 / 5 (1) Nov 22, 2008
The ESO press release links to a short, 5 page paper of the discovery http://www.eso.or...apic.pdf submitted to Astronomy & Astrophysics 11-21-08 with salient details of the discovery (and many fascinating pix) included. Indeed, a remarkable time to be witness to these first direct-imaging observations of extrasolar planets.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.