What cures you may also ail you: Antibiotics, your gut and you

November 18, 2008

We are always being told by marketers of healthy yogurts that the human gut contains a bustling community of different bacteria, both good and bad, and that this balance is vital to keeping you healthy. But if you target the disease-causing bacteria with medicine, what might be the collateral damage to their health-associated cousins that call the human body home?

A new study by Les Dethlefsen et al, to be published this week in the online open-access journal PLoS Biology, looks into the changes that happen in the human gut when it is exposed to the widely used antibiotic, ciprofloxacin. Ciprofloxacin is prescribed for a number of conditions, including common afflictions such as urinary tract infections. It was previously believed to cause only modest harm to the abundant beneficial bacteria of the human body.

To investigate ciprofloxacin's effect on health-associated bacteria a team of researchers, led by Dr. David Relman of Stanford University, catalogued types of bacteria present in the faeces of volunteers who were undergoing a course of treatment of ciprofloxacin. The DNA-analysis technique, massively-parallel pyrosequencing, was central to their approach, which is outlined in a companion paper scheduled for publication in PLoS Genetics on Friday the 21st of November. With this technique, the researchers examined the diversity and abundance of bacteria present in human faeces, identifying over 5,600 different bacterial species and strains. The dramatically increased detection power of this approach allowed the team to track carefully the changes in the gut's bacterial community both during and after the course of treatment.

The study found that while the patients were undergoing treatment the overall abundance of approximately 30% of the species and strains was significantly affected. The effects varied greatly between individuals, with two of the subjects showing a strong reduction in diversity. The effects didn't stop there. Once the course of treatment had been halted, it took up to four weeks for most strains of gut bacteria to return to their pre-treatment levels. Even six months later, some types of bacteria had not managed to return to pre-treatment abundance levels. During this time of population upheaval none of the patients in the study reported signs of gut-related problems.

The bacteria present in the human gut are responsible for various aspects of host nutrition, metabolism and immune responses. This study reveals aspects of resiliency in the indigenous microbiota when subjected to perturbation, but underlines the concern that antibiotic treatment, especially when prolonged or repeated, may have long-lasting effects on overall wellbeing that could go un-noticed.

Citation: Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11): e280. doi:10.1371/journal.pbio.0060280
biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060280

Source: Public Library of Science

Explore further: Scientists modify E. coli to cooperate, control protein expression

Related Stories

There may be a complex market living in your gut

August 1, 2015

Conventional theories used by economists for the past 150 years to explain how societies buy, sell, and trade goods and services may be able to unlock mysteries about the behavior of microbial life on earth, according to ...

Atomic view of bacterial enzymes that help human digestion

July 31, 2015

A group of researchers at the University of Waterloo in Ontario, Canada has reached deep into the human gut, plucked out a couple enzymes produced by bacteria residing there and determined their biological activities and ...

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

How wind sculpted Earth's largest dust deposit

September 1, 2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.