Completely novel action of insulin unveiled

November 5, 2008

A PhD student at Sydney's Garvan Institute of Medical Research has uncovered an important piece in the puzzle of how insulin works, a problem that has plagued researchers for more than 50 years. This finding brings us one step closer to explaining exactly how insulin prompts fat and muscle cells to absorb glucose.

The novel finding by Freddy Yip was published online today in the prestigious international journal, Cell Metabolism.

"Since the 1920s, when Banting and Best discovered insulin, scientists have been battling to discover how it actually works," said Professor David James, head of Garvan's Diabetes Program.

"Then along comes Freddy Yip, doing his PhD, who unveils a completely novel action of insulin, one which we believe plays a fundamental role in glucose uptake, a process that is defective in Type 2 diabetes."

There are two processes involved in Type 2 diabetes: insufficient production of insulin in the pancreas after a meal and faulty uptake and storage of glucose in fat and muscle cells, or 'insulin resistance'.

Freddy's finding focuses on the intersection between these two processes. "In the cell we have series of motor proteins that have the ability to move other molecules from one place to another along intracellular rail road tracks," he explained.

"I have discovered that insulin activates a specific kind of motor protein known as Myo1c, which in turn performs a critical role in glucose uptake."

Insulin controls glucose uptake into our fat cells by moving glucose transporter proteins from inside the cell to the surface membrane so that they can pump glucose into the cell. Myo1c aids in this process by helping the transporters slide into the surface membrane.

In healthy people, around 80% of the glucose transporters migrate to the cell membrane after a meal, allowing plenty of glucose into the cell. In people with Type 2 diabetes, however, that figure drops to around 10%.

Freddy Yip believes his study will create a strong foundation for future diabetes research. "We knew before that Myo1c was somehow involved in the regulation of glucose transport. My research indicates that Myo1c is a major target of insulin action and helps to accelerate the delivery of transporters to the membrane," he said.

"We think there may be blockages in the signal between insulin and myo1c in people who develop insulin resistance. If we're correct, it should be possible to target that pathway for development of new therapies."

Professor James sees the finding as a welcome milestone on a very long road of discovery. "While we're certainly not saying we've found a way to cure diabetes, we are saying we've found a pretty significant clue."

Source: Research Australia

Explore further: Diabetes missing link discovered

Related Stories

Diabetes missing link discovered

December 5, 2016

New Zealand researchers have uncovered a new mechanism that controls the release of the hormone insulin in the body, providing hope for those with a genetic susceptibility to type 2 diabetes.

Research shows nerve growth protein controls blood sugar

November 14, 2016

Research led by a Johns Hopkins University biologist demonstrates the workings of a biochemical pathway that helps control glucose in the bloodstream, a development that could potentially lead to treatments for diabetes.

Recommended for you

Samsung to disable Note 7 phones in recall effort

December 9, 2016

Samsung announced Friday it would disable its Galaxy Note 7 smartphones in the US market to force remaining owners to stop using the devices, which were recalled for safety reasons.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (1) Nov 05, 2008
Very important research.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.