Acid soils in Slovakia tell somber tale

November 17, 2008

Increasing levels of nitrogen deposition associated with industry and agriculture can drive soils toward a toxic level of acidification, reducing plant growth and polluting surface waters, according to a new study published online in Nature Geoscience.

The study, conducted in the Tatra Mountains of Slovakia by the University of Colorado, University of Montana, Slovak Academy of Sciences, and the U.S. Geological Survey, shows what can happen when nitrogen deposition in any part of the world increases to certain levels – levels similar to those projected to occur in parts of Europe by 2050, according to some global change models.

On the basis of these results, the authors warn that the high levels of nitrogen deposited in Europe and North America over the past half century already may have left many soils susceptible to this new stage of acidification. The results of this further acidification, wrote the authors, are highly reduced soil fertility and leaching of acids and toxic metals into surface waters.

A long history of human-influenced nitrogen deposition has left soils in the Western Tatra Mountains of Slovakia highly acidic. The study reveals that the increased nitrogen load in the region triggers the release of soluble iron into alpine grassland soils. This iron release is indicative of extreme soil acidification, comparable to conditions seen in soils exposed to acid mine drainage.

"Recovery from such extreme chemical change could only occur in geologic time, which is why soil is considered a non-renewable resource," said USGS scientist Jill Baron, who helped analyze and interpret the study results.

In addition to this research, Dr. Baron has investigated the impacts of nitrogen deposition in Rocky Mountain National Park for 26 years. "The Rocky Mountains and the Tatra Mountains represent the two ends of the atmospheric deposition effects trajectory," Dr. Baron said. "The effects of nitrogen deposition in Rocky Mountain National Park are just beginning to be observed, allowing resource managers the opportunity to help the region recover if deposition is reduced. In the Tatra Mountains National Park, however, soils are far beyond natural recovery in human time frames."

Much of the eastern U.S. and Northern Europe fall in the middle of the effects spectrum, she added.

Rocky Mountain and Tatra National Parks are sister parks, with scientists and managers beginning to cooperate in studies to understand both. Dr. Baron's work in Rocky Mountain National Park led to the establishment of a nitrogen threshold for the park in 2006, the first time the nation has established a critical load of a pollutant for any park environment. An agreement in 2007 between the Environmental Protection Agency, National Park Service, and Colorado Department of Health and Environment enabled the agencies to set target loads for reducing nitrogen emissions by 2012 to improve ecological conditions.

The paper, "Negative impact of nitrogen deposition on soil buffering capacity," can be accessed at dx.doi.org/10.1038/ngeo339 .

Source: United States Geological Survey

Explore further: Dust from development operations seems to neutralize acidifying effect of emissions, study shows

Related Stories

Rosetta and Philae at comet 67P/Churyumov-Gerasimenko

June 22, 2015

Rosetta has been exploring comet 67P/Churyumov-Gerasimenko since summer 2014. In November 2014, the Philae lander landed on the surface of the comet. The first measurements by the scientific instruments allow conclusions ...

Will we ever colonize Mars?

June 1, 2015

Mars. It's a pretty unforgiving place. On this dry, dessicated world, the average surface temperature is -55 °C (-67 °F). And at the poles, temperatures can reach as low as -153 °C (243 °F). Much of that has to do with ...

Recommended for you

Drought's lasting impact on forests

July 30, 2015

In the virtual worlds of climate modeling, forests and other vegetation are assumed to bounce back quickly from extreme drought. But that assumption is far off the mark, according to a new study of drought impacts at forest ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.