Volcanic eruption signals simulated in lab for first time

October 10, 2008 By Paul Fraumeni

(PhysOrg.com) -- For the first time, seismic signals that precede a volcanic eruption have been simulated and visualized in 3-D under controlled pressure conditions in a laboratory. The ability to conduct such simulations will better equip municipal authorities in volcanic hot spots around the world in knowing when to alert people who live near volcanoes of an impending eruption.

The international research team that conducted the experiments at the University of Toronto published its findings in an article in the prestigious journal, Science, on Oct. 10.

Using equipment funded by the Canada Foundation for Innovation, scientists tested fracture properties of basalt rock from Mount Etna, the active volcano found on the island of Sicily in southern Italy. They were able to record the seismic signals that are routinely generated during earthquakes that occur before volcanic eruptions. The seismic (sound) waves recorded by the team were similar to those emitted by a church organ pipe and are ubiquitous in active volcanic regions.

"The holy grail of volcano research is to be able to predict with complete accuracy when and how exactly a volcano will erupt," said Philip Benson, Marie-Curie Research Fellow in Earth Sciences at University College London (UCL), who conducted the experiments in U of T's Rock Fracture Dynamics Facility. "We are not there yet and, frankly, we may never be able to achieve that level of detail. However, being able to simulate the pressure conditions and events in volcanoes greatly assists geophysicists in exploring the scientific basis for volcanic unrest, ultimately helping cities and towns near volcanoes know whether to evacuate or not."

Benson noted that nearly 500 million people live near enough to the Earth's 600 active volcanoes to endure physical and economic harm should a serious eruption occur. "That is why improved understanding of volcanic mechanisms is a central goal in volcano-tectonic research and hazard mitigation."

The international collaborators in the simulation experiments were Sergio Vinciguerra of the National Geophysics and Volcano Institute (INGV) in Rome, Italy; Philip Meredith of the Rock and Ice Physics Laboratory at UCL; and Paul Young, Keck Chair of Seismology and Rock Mechanics at the University of Toronto and the university's vice-president (research).

Young noted that while this particular rock fracture research focused on volcano dynamics, the knowledge generated from investigation into rock fracturing also has direct application in a wide variety of areas, such as mining, construction of buildings and bridges, oil and gas exploration and in earthquakes and other earth sciences phenomena.

Provided by University of Toronto

Explore further: Astronomers find star with three super-Earths

Related Stories

Astronomers find star with three super-Earths

July 30, 2015

Astronomers said Thursday they had found a planetary system with three super-Earths orbiting a bright, dwarf star—one of them likely a volcanic world of molten rock.

Geology of the Pilanesberg Ring Dike complex

July 28, 2015

While big game animals such as lions, leopards, elephants, rhinos, and water buffaloes draw most visitors to Pilanesberg National Park, the land these animals live on is just as compelling. Pilanesberg is located in one of ...

Venus

July 27, 2015

As the morning star, the evening star, and the brightest natural object in the sky (after the Moon), human beings have been aware of Venus since time immemorial. Even though it would be many thousands of years before it was ...

Recommended for you

Global index proposed to avoid delays on climate policies

August 4, 2015

Professor David Frame, Director of Victoria's Climate Change Research Institute (CCRI), has co-authored a paper published today in the high profile international scientific journal Nature Climate Change. The paper argues ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.