Transplantation: 'molecular miscegenation' blurs the boundary between self and non-self

Oct 30, 2008

A new discovery by London biologists may yield new ways of handling the problem of transplant rejection. In a research article published in the November 2008 print issue of The FASEB Journal, the scientists confirm the two-way transfer of a molecule (called "MHC") that instructs the immune system to tell "self" from "non-self." By disrupting the transfer of this molecule, newly transplanted organs should become "invisible" to the host's immune system.

Such an advance would be considered a major medical breakthrough because current methods of preventing organ rejection involve weakening the host's immune system, which can lead to life-threatening infections.

"The medical potential of this finding is enormous," says Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "Understanding molecular miscegenation should not only make transplantation more widespread and effective, but also shed light on how microbes disrupt our body's immune apparatus for distinguishing self from non-self."

The researchers made this discovery when they transplanted kidneys or hearts from one set of mice into another, with each set of mice having a different version of the molecule being studied. The researchers then conducted tests to see if the molecules were transferred. In the recipient mice, the donated kidneys or hearts and the host tissue expressed both types of molecules. This is the first time that this transfer has been shown to happen in a living system.

Wilson Wong, senior researcher on the study from King's College London, states that although the findings are tantalizing, they represent only a very primitive understanding of this phenomenon. Nevertheless, he hopes "that this study will lead to a better understanding of the immune system to benefit the development of new therapies in areas related to transplantation."

Link: www.fasebj.org>

Source: Federation of American Societies for Experimental Biology

Explore further: Study reveals bone-building protein's impact on bone stem cells

Related Stories

All change for bacterial outer membrane proteins

Jun 10, 2015

The discovery of how a group of bacteria rapidly adapts to changing growth conditions could have implications for future antibiotic development, according to research at the University of Oxford and the University ...

A single-cell breakthrough

Mar 18, 2015

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers ...

Self-repairing subsea material

Dec 16, 2014

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

Recommended for you

New strategies against rare, fatal lung syndrome

14 hours ago

Hermansky-Pudlak syndrome (HPS) patients suffer symptoms including albinism, visual impairment, and slow blood clotting, but what makes some versions of the genetic condition fatal is that patients with some ...

How a newborn baby sees you

22 hours ago

A newborn infant can see its parents' expressions at a distance of 30 cm. For the first time researchers have managed to reconstruct infants visual perception of the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.