More star births than astronomers have calculated

Oct 01, 2008

The "birth rate" for stars is certainly not easy to determine. Distances in the universe are far too great for astronomers to be able to count all the newly formed celestial bodies with the aid of a telescope. So it is fortunate that the emerging stars give themselves away by a characteristic signal known as "H-alpha" emissions. The larger the number of stars being formed in a particular region of the firmament, the more H-alpha rays are emitted from that region.

"H-alpha emissions only occur in the vicinity of very heavy stars," explains Jan Pflamm-Altenburg of the Argelander Institute of Astronomy at Bonn University. It has long been accepted that heavy and light stars are always born in a certain ratio to each other. One "H-alpha baby" is thought to be accompanied by 230 lighter stars with a mass too low for them to emit H-alpha rays.

However, new observations make this theory untenable. On the edges of "disc galaxies" (like the Milky Way) the H-alpha radiation ceases abruptly. For a long time astronomers concluded from this finding that no stars are being born in this region. "The explanation offered is simply that too little gaseous matter exists for it to collapse into balls and form stars," says Jan Pflamm-Altenburg. "These theories largely inform our understanding of how galaxies developed from the Big Bang to the present."

Satellite mission baffles astronomers

A satellite mission has recently revealed that stars are in fact being formed beyond the H-alpha perimeter. These stars are, without exception, so light that no H-alpha radiation is emitted. Consequently, the numerical ratio of 230 light stars to one heavy star does not apply to the edges of galaxies. "This observation presented the astronomy community with quite a conundrum," says Professor Dr. Pavel Kroupa of the Argelander Institute.

Kroupa and Pflamm-Altenburg have come up with a solution which, they say, is basically very simple. They note that star births are not evenly distributed across galaxies but are focused on the star clusters – well known examples being the Seven Sisters and the Orion Nebula. And only large, high-mass clusters produce heavy stars, i.e. the newborn stars that can create the H-alpha emission. "But these heavy star clusters primarily occur in the core regions of disc galaxies," says Jan Pflamm-Altenburg. "Towards the edges they become increasingly rare. The outer regions tend to contain smaller clusters in which the formation of lighter stars is more frequent."

The conclusion is that a numerical ratio of 230 to 1 is only valid for the centres of galaxies. On the edges of galaxies each "H-alpha baby" might be accompanied by a thousand or more light stars. Those astronomers who always use the same factor when calculating total star formations from their H-alpha readings therefore underestimate the number of newborn stars.

The theoretical work of the two Bonn-based astrophysicists supports affirms that the mass of new stars depends linearly on the mass of the gas in their vicinity. Their conclusions open up completely new perspectives for research into the development of galaxies.

Source: University of Bonn

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Astronomers catch binary star explosion inside nebula

Nov 19, 2008

The explosion of a binary star inside a planetary nebula has been captured by a team led by UCL (University College London) researchers – an event that has not been witnessed for more than 100 years. The study, published ...

Recommended for you

Hubble observes one-of-a-kind star nicknamed 'Nasty'

May 21, 2015

Astronomers using NASA's Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is ...

Galaxy's snacking habits revealed

May 20, 2015

A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.