Spallation Neutron Source sends first neutrons to 'Big Bang' beam line

October 9, 2008
While most of the instruments at the Spallation Neutron Source are dedicated to materials and condensed-matter studies, the Fundamental Neutron Physics Beam Line will explore questions in nuclear physics. Credit: ORNL photo

New analytical tools coming on line at the Spallation Neutron Source, the Department of Energy's state-of-the-art neutron science facility at Oak Ridge National Laboratory, include a beam line dedicated to nuclear physics studies.

The Fundamental Neutron Physics Beam Line (FNPB) has opened its shutter to receive neutrons for the first time. Among the nuclear physics studies planned for the new, intense beam line are experiments that probe the neutron-related mysteries associated with the "Big Bang."

"Completion of the Fundamental Neutron Physics Beam Line marks a significant step in the SNS's ramp up to full power, building up to its eventual suite of 25 instruments for neutron analysis," said ORNL Director Thom Mason, who led the SNS construction project to its completion. "The nuclear physics community is excited to have this new tool for exploring theories of the origins of the universe."

Although research at most of the current and future operating SNS beam lines is directed towards condensed matter and materials research, research at the FNPB is focused on basic studies in nuclear physics.

"While other beam lines use neutrons as a probe to study materials, the object for much of the work proposed at the FNPB is the study of the neutron itself," said University of Tennessee Professor Geoffrey Greene, who holds a Joint Faculty Appointment with ORNL and who leads the FNPB project. "Among the questions that will be addressed at the FNPB are the details of the internal structure of the neutron as well as a careful study of the way in which the free neutron decays. Such experiments have important implication for fundamental questions in particle physics and cosmology."

Greene explained that neutrons, which have no electric charge, may nevertheless have a slight displacement between internal positive and negative charges. The existence of such a "neutron electric dipole moment" could shed light on what happened in the early phases of the Big Bang. In particular it could help to explain why the universe appears to be made entirely of matter without any antimatter, he said.

While the neutron is stable in most nuclei, when it is liberated (for example in an SNS neutron beam) it lives for only about 10 minutes. "Precise measurements of the neutron lifetime help clarify the distribution of chemical elements generated in the first few minutes of the Big Bang and shed light on the amount of normal matter—as opposed to dark matter and dark energy—in the universe," Greene said.

"Another set of extremely precise studies at the FNPB will address the interaction between neutrons and simple nuclei and may help to explain universal 'parity' violation," Greene said. "Roughly speaking, parity is the symmetry that implies that the laws of physics are invariant when 'viewed in a mirror.' The surprising fact is, at a basic level, the universe appears to be 'left-handed.'

"The challenge remains to understand why this puzzling state of affairs exists," he said.

Greene noted that the theoretical basis for such symmetry violation --first outlined several decades ago--was recognized earlier this month with the 2008 Nobel Prize to Yoichiro Nambu.

Source: Oak Ridge National Laboratory

Explore further: Future ultra-fast high power lasers will deliver unprecedented accelerating power and efficiency

Related Stories

Watching cement dry could help dental fillings last longer

November 9, 2015

Scientists led by Queen Mary University of London (QMUL) and Aberystwyth University have revealed 'sweet points' for dental fillings, where cement used to fill cracks regain elasticity before hardening indefinitely. This ...

ITER diagnostics heat up across the US

November 2, 2015

ITER, the world's largest tokamak now under construction in France, will have over 60 diagnostic systems installed to enable plasma control, optimize plasma performance, and support machine protection. Princeton Plasma Physics ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.